已知數(shù)列{an}的首項(xiàng)a1=
3
5
an+1=
3an
2an+1
,n=1,2,….
(Ⅰ)設(shè)bn=
1
an
-1
,求證:{bn}是等比數(shù)列,并求{an}的通項(xiàng)公式;
(Ⅱ)證明:對(duì)任意實(shí)數(shù)x,都有an≥2x-x2-
2x2
3n
,n=1,2,…成立.
分析:(Ⅰ)根據(jù)數(shù)列遞推式an+1=
3an
2an+1
,取倒數(shù),化簡(jiǎn)可得{bn}是以
2
3
為首項(xiàng),
1
3
為公比的等比數(shù)列,從而可得{an}的通項(xiàng)公式;
(Ⅱ)由(Ⅰ),利用作差與0比較,即可證得結(jié)論.
解答:證明:(Ⅰ)∵an+1=
3an
2an+1
,
1
an+1
=
2
3
+
1
3an
,
1
an+1
-1=
1
3
(
1
an
-1)
,即bn+1=
1
3
bn
…(2分)
b1=
1
a1
-1=
2
3
,∴{bn}是以
2
3
為首項(xiàng),
1
3
為公比的等比數(shù)列…(4分)
1
an
-1=
2
3
1
3n-1
=
2
3n
,
an=
3n
3n+2
…(6分)
(Ⅱ)由(Ⅰ)知an=
3n
3n+2
>0,
1
an
=1+
2
3n
,
2x-
2x2
3n
-x2-an
=2x-x2(
2
3n
+1)-an
=2x-
x2
an
-an=-(
an
-
x
an
)2≤0

∴原不等式成立.…(12分)
點(diǎn)評(píng):本題考查數(shù)列遞推式,考查等比數(shù)列的證明,考查數(shù)列的通項(xiàng),考查不等式的證明,確定數(shù)列的通項(xiàng)是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
1
2
,前n項(xiàng)和Sn=n2an(n≥1).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)b1=0,bn=
Sn-1
Sn
(n≥2)
,Tn為數(shù)列{bn}的前n項(xiàng)和,求證:Tn
n2
n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=2,前n項(xiàng)和為Sn,且對(duì)任意的n∈N*,當(dāng)n≥2,時(shí),an總是3Sn-4與2-
52
Sn-1
的等差中項(xiàng).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)an,Tn是數(shù)列{bn}的前n項(xiàng)和,n∈N*,求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•江門(mén)一模)已知數(shù)列{an}的首項(xiàng)a1=1,若?n∈N*,an•an+1=-2,則an=
1,n是正奇數(shù)
-2,n是正偶數(shù)
1,n是正奇數(shù)
-2,n是正偶數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)為a1=3,通項(xiàng)an與前n項(xiàng)和sn之間滿(mǎn)足2an=Sn•Sn-1(n≥2).
(1)求證:數(shù)列{
1Sn
}
是等差數(shù)列;
(2)求數(shù)列{an}的通項(xiàng)公式;
(3)求數(shù)列{an}中的最大項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
2
3
,an+1=
2an
an+1
,n∈N+
(Ⅰ)設(shè)bn=
1
an
-1
證明:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)數(shù)列{
n
bn
}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案