已知x,y滿足約束條件
5x+3y-15≤0
x-y+1≥0
x-5y-3≤0
,則z=3x+5y的最大值為( 。
A、0B、5C、3D、17
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:作出不等式組
5x+3y-15≤0
x-y+1≥0
x-5y-3≤0
對(duì)應(yīng)的平面區(qū)域如圖:
由z=3x+5y得y=-
3
5
x+
z
5
,
平移直線y=-
3
5
x+
z
5
,由圖象可知當(dāng)直線y=-
3
5
x+
z
5
經(jīng)過(guò)點(diǎn)A時(shí),
直線y=-
3
5
x+
z
5
的截距最大,此時(shí)z最大,
5x+3y-15=0
x-y+1=0
,解得
x=
3
2
y=
5
2

即A(
3
2
,
5
2
),
此時(shí)z=2×
3
2
+5×
5
2
=17,
故選:D.
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,通過(guò)數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在邊長(zhǎng)為1的正方形ABCD中,以A為圓心,AB為半徑作扇形ABD,在該正方形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自陰影部分的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知長(zhǎng)度分別為1、2、3、4、6的5根小棒,只可拼接不可折斷,將這5根小棒拼接成一個(gè)三角形,當(dāng)這個(gè)三角形的面積最大時(shí),則最大角的余弦值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(x,2),
b
=(1,1),若(
a
+
b
)⊥
b
,則x=(  )
A、2B、4C、-4D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn與an之間滿足Sn+an=1(n≥1).
(Ⅰ)求數(shù)列{an}的通項(xiàng);
(Ⅱ)設(shè)bn=nan,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若a>b>0,c>d>0,則一定有( 。
A、
a
c
b
d
B、
a
c
b
d
C、
a
d
b
c
D、
a
d
b
c

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=
a-2x
1+2x
,其中實(shí)常數(shù)a>-1
(1)求函數(shù)f(x)的定義域和值域
(2)討論函數(shù)f(x)的單調(diào)性和奇偶性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若直線l經(jīng)過(guò)點(diǎn)(1,1),且與兩坐標(biāo)軸所圍成的三角形的面積為2,則直線l的條數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某醫(yī)院將一專家門診已診的1000例病人的病情及診斷所用時(shí)間(單位:分鐘)進(jìn)行了統(tǒng)計(jì),如下表.若視頻率為概率,請(qǐng)用有關(guān)知識(shí)解決下列問(wèn)題.
病癥及代號(hào)普通病癥A1復(fù)診病癥A2常見病癥A3疑難病癥A4特殊病癥A5
人數(shù)100300200300100
每人就診時(shí)間(單位:分鐘)34567
(1)用ξ表示某病人診斷所需時(shí)間,求ξ的數(shù)學(xué)期望.并以此估計(jì)專家一上午(按3小時(shí)計(jì)算)可診斷多少病人;
(2)某病人按序號(hào)排在第三號(hào)就診,設(shè)他等待的時(shí)間為ξ,求P(ξ≤8);
(3)求專家診斷完三個(gè)病人恰好用了一刻鐘的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案