【題目】若點(diǎn)(p,q),在|p|≤3,|q|≤3中按均勻分布出現(xiàn).
(1)點(diǎn)M(x,y)橫、縱坐標(biāo)分別由擲骰子確定,第一次確定橫坐標(biāo),第二次確定縱坐標(biāo),則點(diǎn)M(x,y)落在上述區(qū)域的概率?
(2)試求方程x2+2px﹣q2+1=0有兩個(gè)實(shí)數(shù)根的概率.

【答案】
(1)解:根據(jù)題意,點(diǎn)(p,q),在|p|≤3,|q|≤3中,即在如圖的正方形區(qū)域,

其中p、q都是整數(shù)的點(diǎn)有6×6=36個(gè),

點(diǎn)M(x,y)橫、縱坐標(biāo)分別由擲骰子確定,即x、y都是整數(shù),且1≤x≤3,1≤y≤3,

點(diǎn)M(x,y)落在上述區(qū)域有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),有9個(gè)點(diǎn),

所以點(diǎn)M(x,y)落在上述區(qū)域的概率P1=


(2)解:|p|≤3,|q|≤3表示如圖的正方形區(qū)域,易得其面積為36;

若方程x2+2px﹣q2+1=0有兩個(gè)實(shí)數(shù)根,則有△=(2p)2﹣4(﹣q2+1)≥0,

解可得p2+q2≥1,為如圖所示正方形中圓以外的區(qū)域,其面積為36﹣π,

即方程x2+2px﹣q2+1=0有兩個(gè)實(shí)數(shù)根的概率,P2=


【解析】(1)是古典概型,首先分析可得|p|≤3,|q|≤3整點(diǎn)的個(gè)數(shù),進(jìn)而分析可得點(diǎn)M的縱橫坐標(biāo)的范圍,可得M的個(gè)數(shù),由古典概型公式,計(jì)算可得答案;(2)是幾何概型,首先可得|p|≤3,|q|≤3表示正方形區(qū)域,易得其面積,進(jìn)而根據(jù)方程x2+2px﹣q2+1=0有兩個(gè)實(shí)數(shù)根,則有△=(2p)2﹣4(﹣q2+1)≥0,變形可得p2+q2≥1,分析可得其表示的區(qū)域即面積,由幾何概型公式,計(jì)算可得答案.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用幾何概型的相關(guān)知識(shí)可以得到問題的答案,需要掌握幾何概型的特點(diǎn):1)試驗(yàn)中所有可能出現(xiàn)的結(jié)果(基本事件)有無限多個(gè);2)每個(gè)基本事件出現(xiàn)的可能性相等.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示的多面體是由一個(gè)直平行六面體被平面所截后得到的,其中, ,

(Ⅰ)求證: 平面

(Ⅱ)求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的極坐標(biāo)方程為,直線的參數(shù)方程為為參數(shù), ).

(Ⅰ)把曲線的極坐標(biāo)方程化為直角坐標(biāo)方程,并說明曲線的形狀;

(Ⅱ)若直線經(jīng)過點(diǎn),求直線被曲線截得的線段的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】執(zhí)行如圖所示的程序框圖,如果輸入a=1,b=2,則輸出的a的值為(

A.7
B.9
C.11
D.13

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲、乙兩名學(xué)生中選拔一人參加射箭比賽,為此需要對(duì)他們的射箭水平進(jìn)行測(cè)試.現(xiàn)這兩名學(xué)生在相同條件下各射箭10次,命中的環(huán)數(shù)如表:

8

9

7

9

7

6

10

10

8

6

10

9

8

6

8

7

9

7

8

8


(1)計(jì)算甲、乙兩人射箭命中環(huán)數(shù)的平均數(shù)和標(biāo)準(zhǔn)差;
(2)比較兩個(gè)人的成績(jī),然后決定選擇哪名學(xué)生參加射箭比賽.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)是奇函數(shù),并且在R上為增函數(shù),若0≤θ≤ 時(shí),f(msinθ)+f(1﹣m)>0恒成立,則實(shí)數(shù)m的取值范圍是(
A.(0,1)
B.(﹣∞,0)
C.(﹣∞,1)
D.(﹣∞,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某工廠家具車間造A、B型兩類桌子,每張桌子需木工和漆工兩道工序完成.已知木工做一張A、B型桌子分別需要1小時(shí)和2小時(shí),漆工油漆一張A、B型桌子分別需要3小時(shí)和1小時(shí);又知木工、漆工每天工作分別不得超過8小時(shí)和9小時(shí),而工廠造一張A、B型桌子分別獲利潤(rùn)2千元和3千元,試問工廠每天應(yīng)生產(chǎn)A、B型桌子各多少?gòu),才能獲得利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某造船公司年造船量是20,已知造船x艘的產(chǎn)值函數(shù)為R(x)3 700x45x210x3(單位:萬元),成本函數(shù)為C(x)460x5 000(單位:萬元)

(1)求利潤(rùn)函數(shù)P(x);(提示:利潤(rùn)=產(chǎn)值-成本)

(2)問年造船量安排多少艘時(shí),可使公司造船的年利潤(rùn)最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N*
(1)證明數(shù)列{an﹣n}為等比數(shù)列
(2)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

同步練習(xí)冊(cè)答案