已知點(diǎn)P在曲線y=x2-1上,它的橫坐標(biāo)為a(a>0),過點(diǎn)P作曲線y=x2的切線.
(1)求切線的方程;
(2)求證:由上述切線與y=x2所圍成圖形的面積S與a無關(guān).
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,定積分在求面積中的應(yīng)用
專題:綜合題,導(dǎo)數(shù)的概念及應(yīng)用
分析:(1)確定P的坐標(biāo),設(shè)切點(diǎn)Q的坐標(biāo),利用導(dǎo)數(shù)的幾何意義,可得切線的方程;
(2)利用定積分表示面積,即可得出結(jié)論.
解答: (1)解:點(diǎn)P的坐標(biāo)為(a,a2-1),
設(shè)切點(diǎn)Q的坐標(biāo)為(x,x2),
由kPQ=
a2-1-x2
a-x
及y′=2x知
a2-1-x2
a-x
=2x,
解得x=a+1或x=a-1.
所以所求的切線方程為2(a+1)x-y-(a+1)2=0或2(a-1)x-y-(a-1)2=0…(6分)
(2)證明:S=
a
a-1
[x2-2(a-1)x+(a-1)2]dx+
a+1
a
[x2-2(a+1)x+(a+1)2]dx=
2
3

故所圍成的圖形面積S=
2
3
,此為與a無關(guān)的一個(gè)常數(shù)…(12分)
點(diǎn)評(píng):本題考查定積分在求面積中的應(yīng)用、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某種飲料每箱裝5聽,其中有3聽合格,2聽不合格,現(xiàn)質(zhì)檢人員從中隨機(jī)抽取2聽進(jìn)行檢測(cè),則檢測(cè)出至少有一聽不合格飲料的概率是( 。
A、
3
10
B、
7
10
C、
2
5
D、
3
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,0)及圓B:(x+1)2+y2=16,C為圓B上任意一點(diǎn),求AC垂直平分線與線段BC的交點(diǎn)P的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
1
tan2x
+5-
2
tanx
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=lnx+
1
2
ax2-2bx

(Ⅰ)當(dāng)a=-3,b=1時(shí),求函數(shù)f(x)的最大值;
(Ⅱ)令F(x)=f(x)-
1
2
ax2+2bx+
a
x
1
2
≤x≤3
),其圖象上存在一點(diǎn)P(x0,y0),使此處切線的斜率k≤
1
2
,求實(shí)數(shù)a的取值范圍;
(Ⅲ)當(dāng)a=0,b=-
1
2
,m>1
時(shí),方程f(x)=mx有唯一實(shí)數(shù)解,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A是由適合以下性質(zhì)的函數(shù)f(x)構(gòu)成的:對(duì)于任意的m,n∈[-1,1],且m≠n,都有|f(m)-f(n)|≤3|m-n|.
(1)判斷函數(shù)f1(x)=x2是否在集合A中?并說明理由;
(2)設(shè)函數(shù)f(x)=ax2+bx,若對(duì)于任意的m,n∈[-1,1],有|a(m+n)+b|≤3恒成立,試求2a+b的取值范圍,并推理判斷f(x)是否在集合A中?
(3)在(2)的條件下,若f(-2)=6,且對(duì)于滿足(2)的每個(gè)實(shí)數(shù)a,存在最大的實(shí)數(shù)t,使得當(dāng)x∈[-2,t]時(shí),|f(x)|≤6恒成立,試求用a表示t的表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方形ABCD的邊長(zhǎng)為1,P,Q分別為邊AB,DA上的點(diǎn).
(Ⅰ)若CP=CQ,且△CPQ的面積為
1
3
,求∠BCP的大;
(Ⅱ)若△APQ的周長(zhǎng)為2,求∠PCQ的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我市某校高三年級(jí)有男生720人,女生480人,教師80人,用分層抽樣的方法從中抽取16人,進(jìn)行新課程改革的問卷調(diào)查.設(shè)其中某項(xiàng)問題的選擇分為“同意”與“不同意”兩種,且每人都做了一種選擇.下面表格中提供了被調(diào)查人答卷情況的部分信息.
同意 不同意 合計(jì)
男生 x 5
女生 y 3
教師 1 z
(Ⅰ)求x、y、z的值
(Ⅱ)若面向高三年級(jí)全體學(xué)生進(jìn)行該問卷調(diào)查,試根據(jù)上述信息,估計(jì)高三年級(jí)學(xué)生選擇“同意”的人數(shù);
(Ⅲ)從被調(diào)查的女生中選取3人進(jìn)行交談,設(shè)選到的3名女生中,選擇“同意”的人數(shù)為ξ,求ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=e2x2+1導(dǎo)數(shù)是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案