A. | (0,$\frac{1}{2}$) | B. | ($\frac{1}{2}$,+∞) | C. | ($\frac{1}{3}$,1) | D. | (3,+∞) |
分析 作出函數(shù)f(x)的圖象,依題意,可得4m-m2<m(m>0),解之即可.
解答 解:當m>0時,函數(shù)f(x)=$\left\{\begin{array}{l}{|x|,x≤m}\\{{x}^{2}-2mx+4m,x>m}\end{array}\right.$的圖象如圖:
∵x>m時,f(x)=x2-2mx+4m=(x-m)2+4m-m2>4m-m2,
∴y要使得關于x的方程f(x)=b有三個不同的根,
必須4m-m2<m(m>0),
即m2>3m(m>0),
解得m>3,
∴m的取值范圍是(3,+∞),
故選:D
點評 本題考查根的存在性及根的個數(shù)判斷,數(shù)形結合思想的運用是關鍵,分析得到4m-m2<m是難點,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,4) | B. | (4,+∞) | C. | [4,+∞) | D. | (-4,4) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=log22x | B. | y=$\sqrt{{x}^{2}}$ | C. | y=2${\;}^{lo{g}_{2}x}$ | D. | y=($\sqrt{x}$)2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3}{20}$ | B. | $\frac{2}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{3}{10}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com