(2010•陜西一模)若A,B,C是銳角三角形ABC的三個內(nèi)角,向量
p
=(cosA,sinA)
,
q
=(-cosB,sinB)
,則
p
q
的夾角為( 。
分析:利用兩個向量數(shù)量積公式求得
p
q
=-cos(A+B),再由
p
q
=|
p
|•|
q
|
 cos<
p
 ,
q
>0,可得cos<
p
 ,
q
>>0,可得
p
q
的夾角為銳角.
解答:解:∵A,B,C是銳角三角形ABC的三個內(nèi)角,向量
p
=(cosA,sinA)
q
=(-cosB,sinB)

p
q
=(cosA,sinA)•(-cosB,sinB)=-coaAcosB+sinAsinB=-(coaAcosB-sinAsinB )=-cos(A+B).
由 π>A+B>
π
2
,可得 cos(A+B)<0,-cos(A+B)>0.
再由
p
q
=|
p
|•|
q
|
 cos<
p
 ,
q
>0,可得cos<
p
 ,
q
>>0,
p
q
的夾角為銳角,
故選A.
點(diǎn)評:本題主要考查兩個向量的數(shù)量積的定義,兩個向量數(shù)量積公式的應(yīng)用,以及三角函數(shù)在各個象限中的符號,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)有甲乙兩個班級進(jìn)行數(shù)學(xué)考試,按照大于等于85分為優(yōu)秀,85分以下為非優(yōu)秀統(tǒng)計(jì)成績后,得到如下的列聯(lián)表.
優(yōu)秀 非優(yōu)秀 總計(jì)
甲班 10
乙班 30
合計(jì) 105
已知在全部105人中隨機(jī)抽取1人為優(yōu)秀的概率為
2
7

(Ⅰ)請完成上面的列聯(lián)表;
(Ⅱ)從105名學(xué)生中選出10名學(xué)生組成參觀團(tuán),若采用下面的方法選取:先用簡單隨機(jī)抽樣從105人中剔除5人,剩下的100人再按系統(tǒng)抽樣的方法抽取10人,請寫出在105人 中,每人入選的概率.(不必寫過程)
(Ⅲ)把甲班優(yōu)秀的10名學(xué)生從2到11進(jìn)行編號,先后兩次拋擲一枚均勻的骰子,出現(xiàn)的點(diǎn)數(shù)之和作為被抽取人的序號,試求抽到6號或10號的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)已知函數(shù)f(x)=
3
sin(ωx+φ)-cos(ωx+φ)
(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為
π
2

(Ⅰ)求ω和φ的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
π
6
個單位后,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)命題p:“對任意一個實(shí)數(shù)x,均有x2≤0”,則?p為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)雙曲線
x2
4
-
y2
3
=1
的右焦點(diǎn)到直線y=
3
x
的距離是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•陜西一模)某單位有六個科室,現(xiàn)從人才市場招聘來4名新畢業(yè)的大學(xué)生,要安排到其中的兩個科室且每科室2名,則不同的安排方案種數(shù)為(  )

查看答案和解析>>

同步練習(xí)冊答案