15.設(shè)命題p:(x-2)2≤1,命題q:x2+(2a+1)x+a(a+1)≥0,若p是q的充分不必要條件,求實(shí)數(shù)a的取值范圍.

分析 命題p:(x-2)2≤1,可得解集A=[1,3].命題q:x2+(2a+1)x+a(a+1)≥0,可得B=(-∞,-a-1]∪[-a,+∞).根據(jù)p是q的充分不必要條件,即可得出.

解答 解:命題p:(x-2)2≤1,解得1≤x≤3,記A=[1,3].
命題q:x2+(2a+1)x+a(a+1)≥0,解得x≤-a-1,或x≥-a.記B=(-∞,-a-1]∪[-a,+∞).
∵p是q的充分不必要條件,∴3≤-a-1,或-a≤1,∴a≤-4,或a≥-1.
∴實(shí)數(shù)a的取值范圍為(-∞,-4]∪[-1,+∞).

點(diǎn)評 本題考查了不等式的解法、簡易邏輯,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.命題“?x∈R,x2-4x+4≥0”的否定是( 。
A.?x∈R,x2-4x+4<0B.?x∉R,x2-4x+4<0
C.$?{x_0}∈R,{x_0}^2-4{x_0}+4<0$D.$?{x_0}∉R,{x_0}^2-4{x_0}+4<0$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=e1-x(-a+cosx),a∈R.
(Ⅰ)若函數(shù)y=f(x)在[0,π]存在單調(diào)增區(qū)間,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若f($\frac{π}{2}$)=0,證明:對于?x∈[-1,$\frac{1}{2}$],總有f(-x-1)+2f′(x)•cos(-x-1)>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.將一枚質(zhì)地均勻的硬幣隨機(jī)拋擲兩次,出現(xiàn)一次正面向上,一次反面向上的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{4}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)=2x3+3x2+6x-5,則f′(0)=6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知拋物線C:y2=4x的交點(diǎn)為F,直線y=x-1與C相交于A,B兩點(diǎn),與雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=2(a>0,b>0)的漸近線相交于M,N兩點(diǎn),若線段AB與MN的中點(diǎn)相同,則雙曲線E離心率為( 。
A.$\frac{\sqrt{6}}{3}$B.2C.$\frac{\sqrt{15}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知任意兩個(gè)向量$\overrightarrow{a}$,$\overrightarrow$不共線,若$\overrightarrow{OA}$=$\overrightarrow{a}$+$\overrightarrow$,$\overrightarrow{OB}$=$\overrightarrow{a}$+2$\overrightarrow$,$\overrightarrow{OC}$=2$\overrightarrow{a}$-$\overrightarrow$,$\overrightarrow{OD}$=$\overrightarrow{a}$-$\overrightarrow$,則下列結(jié)論正確的是(  )
A.A,B,C三點(diǎn)共線B.A,B,D三點(diǎn)共線C.A,C,D三點(diǎn)共線D.B,C,D三點(diǎn)共線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.復(fù)數(shù)$z=\frac{2+i}{i}$的共軛復(fù)數(shù)是( 。
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,已知$\frac{{2{S_n}}}{3}-{3^{n-1}}$=1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足${b_n}=\frac{{{{log}_3}{a_n}}}{a_n}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

同步練習(xí)冊答案