分析 (1)根據(jù)正弦定理與兩角和的正弦公式,化簡題中的等式可得sin(B+C)-2sinAcosC,結(jié)合三角函數(shù)的誘導(dǎo)公式算出cosC=$\frac{1}{2}$,可得角C的大;
(2)由余弦定理可得ab的值,利用三角形面積公式即可求解.
解答 解:(1)∵在△ABC中,ccosB=(2a-b)cosC,
∴由正弦定理,可得sinCcosB=(2sinA-sinB)cosC,
即sinCcosB+sinBcosC=2sinAcosC,
∴sin(B+C)=2sinAcosC,
∵△ABC中,sin(B+C)=sin(π-A)=sinA>0,
∴sinA=2sinAcosC,即sinA(1-2cosC)=0,可得cosC=$\frac{1}{2}$.
又∵C是三角形的內(nèi)角,
∴C=$\frac{π}{3}$.
(2)∵C=$\frac{π}{3}$,a+b+c=2$\sqrt{3}$+2,c=2,可得:a+b=2$\sqrt{3}$,
∴由余弦定理可得:22=a2+b2-2abcosC=a2+b2-ab=(a+b)2-3ab=12-3ab,解得:ab=$\frac{8}{3}$,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{1}{2}$×$\frac{8}{3}$×$\frac{\sqrt{3}}{2}$=$\frac{2\sqrt{3}}{3}$.
點(diǎn)評 本題求角C的大小并依此求三角形面積,著重考查了正余弦定理、兩角和的正弦公式三角函數(shù)的圖象性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 35 | B. | 54 | C. | 72 | D. | 90 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
游客數(shù)量 (單位:百人) | [0,100) | [100,200) | [200,300) | [300,400] |
天數(shù) | a | 10 | 4 | 1 |
頻率 | b | $\frac{1}{3}$ | $\frac{2}{15}$ | $\frac{1}{30}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com