12.(x-1)(2x+1)5展開(kāi)式中x3的系數(shù)為-40.

分析 求出(2x+1)5展開(kāi)式的含x2與x3項(xiàng)的系數(shù),再計(jì)算(x-1)(2x+1)5展開(kāi)式中x3的系數(shù).

解答 解:(2x+1)5展開(kāi)式的通項(xiàng)公式為
Tr+1=${C}_{5}^{r}$•(2x)5-r
令5-r=2,解得r=3,
所以T4=${C}_{5}^{3}$•(2x)2=40x2
令5-r=3,解得r=2,
所以T3=${C}_{5}^{2}$•(2x)3=80x3;
所以(x-1)(2x+1)5展開(kāi)式中x3的系數(shù)為
40×1+80×(-1)=-40.
故答案為:-40.

點(diǎn)評(píng) 本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開(kāi)式的通項(xiàng)公式,求展開(kāi)式中某項(xiàng)的系數(shù),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.冪函數(shù)y=f(x)的圖象經(jīng)過(guò)點(diǎn)$[2,\frac{1}{4}]$,則其解析式是f(x)=x-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知f(x)在上是奇函數(shù),且f(x)在上的最大值為m,則函數(shù)F(x)=f(x)+3在上的最大值與最小值之和為( 。
A.2m+3B.2m+6C.6D.6-2m

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.在正項(xiàng)數(shù)列{an}中,a1=1,Sn是其前n項(xiàng)和,點(diǎn)An($\sqrt{{S}_{n}}$,$\sqrt{{S}_{n-1}}$)(n>1)在曲線(xiàn)x2-y2=n上,數(shù)列{bn}的通項(xiàng)公式為bn=3n-1
(1)求數(shù)列{an}的通項(xiàng)公式
(2)設(shè)cn=anbn,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.${∫}_{0}^{3}$|x2-1|dx=$\frac{22}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知橢圓 $\frac{{y}^{2}}{9}$+x2=1,過(guò)點(diǎn)P($\frac{1}{2}$,$\frac{1}{2}$)的直線(xiàn)與橢圓相交于A,B兩點(diǎn),且弦AB被點(diǎn)P平分,則直線(xiàn)AB的方程為9x+y-5=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.“牟合方蓋”是我國(guó)古代數(shù)學(xué)家劉徽在研究球的體積的過(guò)程中構(gòu)造的一個(gè)和諧優(yōu)美的幾何體.它由完全相同的四個(gè)曲面構(gòu)成,相對(duì)的兩個(gè)曲面在同一個(gè)圓柱的側(cè)面上,好似兩個(gè)扣合(牟合)在一起的方形傘(方蓋).其直觀圖如下左圖,圖中四邊形是為體現(xiàn)其直觀性所作的輔助線(xiàn).其實(shí)際直觀圖中四邊形不存在,當(dāng)其正視圖和側(cè)視圖完全相同時(shí),它的正視圖和俯視圖分別可能是( 。
A.a,bB.a,cC.c,bD.b,d

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知函數(shù)y=x2-4x+6.
①當(dāng)x∈R時(shí),畫(huà)出函數(shù)圖象,根據(jù)圖象寫(xiě)出函數(shù)的增區(qū)間、減區(qū)間;
②當(dāng)x∈[1,4]時(shí),求出函數(shù)的最大值、最小值;
③當(dāng)x∈(t,4],y∈[2,6]時(shí),試確定t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.不等式組$\left\{\begin{array}{l}{x^2}-x-2>0①\\ 2{x^2}+(5+2a)x+5a<0②\end{array}\right.$解集中的整數(shù)有且只有一個(gè),則a的范圍( 。
A.[-2,2]B.[-3,2)C.[-3,2)∪(3,4]D.(3,4]

查看答案和解析>>

同步練習(xí)冊(cè)答案