如圖,橢圓的中心在坐標原點,F(xiàn)為左焦點,A、B分別為長軸和短軸上的一個頂點,當FB⊥AB時,此類橢圓稱為“優(yōu)美橢圓”;類比“優(yōu)美橢圓”,可推出“優(yōu)美雙曲線”的離心率為   
【答案】分析:首先通過類比,得“優(yōu)美雙曲線”的虛軸一端與左焦點的連線,垂直于該點與右頂點連線.作出示意圖,在RtABF中用射影定理,得b2=ac,結(jié)合雙曲線a、b、c的關(guān)系和離心率的定義解一元二次方程,即可得到“優(yōu)美雙曲線”的離心率.
解答:解:根據(jù)“優(yōu)美橢圓”的定義,可得“優(yōu)美雙曲線”的虛軸一端與左焦點的連線,垂直于該點與右頂點連線.如圖,設(shè)A是雙曲線右頂點,B是虛軸上端點,F(xiàn)是左焦點
∵△ABF中,F(xiàn)B⊥AB,且AB⊥BF
∴OB2=OA×OF,即b2=ac
因此,c2-a2=ac,兩邊都除以a2并整理,得e2-e-1=0,解之得e=(舍負)
∴“優(yōu)美雙曲線”的離心率為
故答案為:
點評:本題通過“優(yōu)美橢圓”類比到“優(yōu)美雙曲線”,求雙曲線的離心率,著重考查了橢圓和雙曲線基本概念和簡單性質(zhì),考查了直角三角形中的相似三角形等知識,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•烏魯木齊一模)如圖,橢圓的中心在坐標原點O,頂點分別是A1,A2,B1,B2,焦點為F1,F(xiàn)2,延長B1F2與A2B2交于P點,若∠B1PA2為鈍角,則此橢圓的離心率的取值范圍為(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓的中心在坐標原點O,左右焦點分別為F1,F(xiàn)2,右頂點為A,上頂點為B,離心率e=
35
,三角形△BF1F2的周長為16.直線y=kx(k>0)與AB相交于點D,與橢圓相交于E,F(xiàn)兩點.
(1)求該橢圓的標準方程.
(2)求四邊形AEBF面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓的中心在坐標原點,長軸端點為A、B,右焦點為F,且
AF
FB
=1
,|
OF
|=1

(Ⅰ)求橢圓的標準方程;
(Ⅱ)過橢圓的右焦點F作直線l1,l2,直線l1與橢圓分別交于點M、N,直線l2與橢圓分別交于點P、Q,且|
MP
|2+|
NQ
|2=|
NP
|2+|
MQ
|2
,求四邊形MPNQ的面積S的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓的中心在坐標原點,F(xiàn)為左焦點,A、B分別為長軸和短軸上的一個頂點,當FB⊥AB時,此類橢圓稱為“優(yōu)美橢圓”;類比“優(yōu)美橢圓”,可推出“優(yōu)美雙曲線”的離心率為
1+
5
2
1+
5
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2014•江門模擬)如圖,橢圓Γ的中心在坐標原點O,過右焦點F(1,0)且垂直于橢圓對稱軸的弦MN的長為3.
(1)求橢圓Γ的方程;
(2)直線l經(jīng)過點O交橢圓Γ于P、Q兩點,NP=NQ,求直線l的方程.

查看答案和解析>>

同步練習冊答案