1,2,3
時(shí),,
是奇函數(shù);1正確;
時(shí),方程,只有當(dāng)
時(shí),方程才有解,此時(shí)解得,
方程只有一個(gè)實(shí)根;2正確;

的圖像關(guān)于點(diǎn)對(duì)稱;3正確;
例如:時(shí),方程有三個(gè)根4錯(cuò)誤.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),函數(shù),且mp<0),給出下列結(jié)論:
①存在實(shí)數(shù)rs,使得對(duì)于任意實(shí)數(shù)x恒成立;
②函數(shù)的圖像關(guān)于點(diǎn)對(duì)稱;
③函數(shù)可能不存在零點(diǎn)(注:使關(guān)于x的方程的實(shí)數(shù)x叫做函數(shù)的零點(diǎn));
④關(guān)于x的方程的解集可能為{-1,1,4,5}.
其中正確結(jié)論的序號(hào)為         (寫出所有正確結(jié)論的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

分別寫出下列命題的逆命題,否命題與逆否命題,并判斷其真假:
原命題:已知,若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列四個(gè)命題:
①“向量,的夾角為銳角”的充要條件是“·>0”;
②如果f(x)=lgx,則對(duì)任意的x1、x2Î(0,+¥),且x1¹x2,都有f()>;
③設(shè)f(x)與g(x)是定義在同一區(qū)間[a,b]上的兩個(gè)函數(shù),若對(duì)任意xÎ[a,b],都有|f(x)?g(x)|£1成立,則稱f(x)和g(x)在[a,b]上是“密切函數(shù)”,區(qū)間[a,b]稱為“密切區(qū)間”.若f(x)=x2?3x+4與g(x)=2x?3在[a,b]上是“密切函數(shù)”,則其“密切區(qū)間”可以是[2,3];
④記函數(shù)y=f(x)的反函數(shù)為y=f?1(x),要得到y(tǒng)=f?1(1?x)的圖象,可以先將y=f(x)的圖象關(guān)于直線y=x做對(duì)稱變換,再將所得的圖象關(guān)于y軸做對(duì)稱變換,再將所得的圖象沿x軸向左平移1個(gè)單位,即得到y(tǒng)=f?1(1?x)的圖象.其中真命題的序號(hào)是           。(請(qǐng)寫出所有真命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

給出下列四個(gè)命題:
①異面直線是指空間既不平行又不相交的直線;
②兩異面直線,如果平行于平面,那么不平行平面
③兩異面直線,如果平面,那么不垂直于平面
④兩異面直線在同一平面內(nèi)的射影不可能是兩條平行直線 。
其中正確的命題是_________________。 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若命題甲:“是真命題”, 命題乙:“是真命題”,則命題甲是命題乙的
A.充要條件B.必要不充分條件
C.充分不必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題中為真命題的是
①“若,則不全為零”的否命題; ②“等腰三角形都相似”的逆命題; ③“若,則不等式的解集為R”的逆否命題。
A.①B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

下列命題正確的是(   )
A.若,則B.若,則
C.若,則D.若,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分14分) 已知命題:存在,使;命題:方程表示雙曲線.若命題“”為真命題,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案