分析 根據(jù)條件得到y(tǒng)+z=-x,y2+z2=1-x2,再根據(jù)柯西不等式(1•y+1•z)2≤(1+1)•(y2+z2),求出x的取值范圍,進(jìn)而得到最大值.
解答 解:因?yàn),x、y、z滿足x+y+z=0,x2+y2+z2=1,
所以,y+z=-x,y2+z2=1-x2,
根據(jù)二維形式的柯西不等式得,
(1•y+1•z)2≤(1+1)•(y2+z2),
即(-x)2≤2(1-x2),
整理得,3x2≤2,
解得x∈[-$\frac{\sqrt{6}}{3}$,$\frac{\sqrt{6}}{3}$],
因此,x的最大值為$\frac{\sqrt{6}}{3}$,
故答案為:$\frac{\sqrt{6}}{3}$.
點(diǎn)評(píng) 本題主要考查了柯西不等式在求最值問題中的應(yīng)用,體現(xiàn)了構(gòu)造與整體的解題思想,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com