分析 任意取出2個球,基本事件總數(shù)n=${C}_{10}^{2}$=45,取出的2個球顏色相同包含的基本事件個數(shù)m=${C}_{4}^{2}+{C}_{3}^{2}+{C}_{3}^{2}$=12,由此能求出取出的2個球顏色相同的概率;有放回地任意取10次,每次取出一個球,每取到一個紅球得2分,取到其它球不得分,取到紅球的個數(shù)ξ~B(0.4,10),X=2ξ,由此能求出得分數(shù)X的方差.
解答 解:一個袋中裝有大小相同的4個紅球,3個白球,3個黃球.
任意取出2個球,基本事件總數(shù)n=${C}_{10}^{2}$=45,
取出的2個球顏色相同包含的基本事件個數(shù)m=${C}_{4}^{2}+{C}_{3}^{2}+{C}_{3}^{2}$=12,
∴取出的2個球顏色相同的概率是p=$\frac{m}{n}=\frac{12}{45}=\frac{4}{15}$.
∵有放回地任意取10次,每次取出一個球,每取到一個紅球得2分,取到其它球不得分,
∴取到紅球的個數(shù)ξ~B(0.4,10),
∴D(ξ)=10×0.4×0.6=2.4,
∵X=2ξ,
∴D(X)=4E(ξ)=4×2.4=9.6.
故答案為:$\frac{4}{15}$,9.6.
點評 本題考查概率的求法,考查離散型隨機變量的方差的求法,是基礎(chǔ)題,解題時要認真審題,注意二項分布的性質(zhì)的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 60° | B. | 90° | C. | 120° | D. | 150° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}-\frac{{4\sqrt{3}}}{9}$ | B. | $π-\frac{{4\sqrt{3}}}{9}$ | C. | $\frac{π}{2}+\frac{{4\sqrt{3}}}{9}$ | D. | $π+\frac{{4\sqrt{3}}}{9}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.025 | B. | 0.050 | C. | 0.950 | D. | 0.975 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com