4.x、y滿足約束條件$\left\{\begin{array}{l}x-y+1≥0\\ x+2y-8≤0\\ x≥0\end{array}\right.$,則z=x-2y的最小值為-4.

分析 作出不等式組對應的平面區(qū)域,利用目標函數(shù)的幾何意義,進行求最值即可.

解答 解:由z=x-2y得y=$\frac{1}{2}x-\frac{z}{2}$,
作出不等式組對應的平面區(qū)域如圖(陰影部分ABC):
平移直線y=$\frac{1}{2}x-\frac{z}{2}$,
由圖象可知當直線y=$\frac{1}{2}x-\frac{z}{2}$,過點A時,直線y=$\frac{1}{2}x-\frac{z}{2}$的截距最大,此時z最小,
由$\left\{\begin{array}{l}{x-y+1=0}\\{x+2y-8=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即A(2,3).
代入目標函數(shù)z=x-2y,
得z=2-2×3=2-6=-4.
∴目標函數(shù)z=x-2y的最小值是-4.
故答案為:-4.

點評 本題主要考查線性規(guī)劃的基本應用,利用目標函數(shù)的幾何意義是解決問題的關鍵,利用數(shù)形結合是解決問題的基本方法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

14.已知f1(x)=cosx,f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),則f2016(x)=( 。
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知函數(shù)f(x)=cos2x+2$\sqrt{3}$sinxcosx.
(1)求f(x)的最小正周期和單調遞增區(qū)間;
(2)在△ABC中,角A、B、C所對邊分別是a,b,c,若f($\frac{A}{2}$)=2,且b+c=4,求實數(shù)a的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.下列結論:
①若y=cosx,y′=-sinx;      ②若y=-$\frac{1}{\sqrt{x}}$,y′=$\frac{1}{2x\sqrt{x}}$;③若f(x)=$\frac{1}{{x}^{2}}$,f′(3)=-$\frac{2}{27}$;   ④若y=3,則y′=0.
正確個數(shù)是( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若x<-3,則x+$\frac{2}{x+3}$的最大值為( 。
A.-2$\sqrt{2}$+3B.$-2\sqrt{2}-3$C.$2\sqrt{2}+3$D.$2\sqrt{2}-3$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.求函數(shù)y=${log}_{\frac{1}{2}}$(x2-6x+17)的單調區(qū)間和值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.解關于x的不等式$\frac{1}{|2x-3|}$>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,且以原點為圓心,橢圓的焦距為直徑的圓與直線x•sinθ+y•cosθ-1=0相切(θ為常數(shù)).
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)如圖,若橢圓C的左、右焦點分別為F1,F(xiàn)2,過F2的直線l與橢圓分別交于兩點M、N,求$\overrightarrow{{F}_{1}M}$•$\overrightarrow{{F}_{1}N}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知函數(shù)f(x)=2x2+alnx,若對任意兩個不等的正數(shù)x1,x2(x1>x2),都有f(x1)-f(x2)>8(x1-x2)成立,則實數(shù)a的取值范圍是( 。
A.a≥4B.a≥3C.a≥2D.以上答案均不對

查看答案和解析>>

同步練習冊答案