在△ABC中,若asinA+bsinB<csinC,則△ABC的形狀是______.
由正弦定理可得
a
sinA
=
b
sinB
=
c
sinC
=k
>0,∴sinA=
a
k
sinB=
b
k
,sinC=
c
k

∵asinA+bsinB<csinC,∴
a2
k
+
b2
k
c2
k
,即a2+b2<c2
cosC=
a2+b2-c2
2ab
<0.
∵0<C<π,∴
π
2
<C<π

∴角C設(shè)鈍角.
∴△ABC的形狀是鈍角三角形.
故答案為鈍角三角形
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)如圖,平行四邊形ABCD中,M、N分別為DC、BC的中點(diǎn),已知
AM
=
c
、
AN
=
d
,試用
c
、
d
表示
AB
AD

(2)在△ABC中,若
AB
=
a
AC
=
b
若P,Q,S為線段BC的四等分點(diǎn),試證:
AP
+
AQ
+
AS
=
3
2
(
a
+
b
)
;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在三棱錐S-ABC中,側(cè)面SAC與底面ABC垂直,E,O分別是SC、AC的中點(diǎn),SA=SC=
2
,BC=
1
2
AC,∠ASC=∠ACB=90°.
(1)求證:OE∥平面SAB;
(2)若點(diǎn)F在線段BC上,問(wèn):無(wú)論F在BC的何處,是否都有OE⊥SF?請(qǐng)證明你的結(jié)論;
(3)求二面角B-AS-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市海淀區(qū)八一中學(xué)高三(上)周練數(shù)學(xué)試卷(11)(理科)(解析版) 題型:解答題

如圖,在三棱錐S-ABC中,側(cè)面SAC與底面ABC垂直,E,O分別是SC、AC的中點(diǎn),SA=SC=,BC=AC,∠ASC=∠ACB=90°.
(1)求證:OE∥平面SAB;
(2)若點(diǎn)F在線段BC上,問(wèn):無(wú)論F在BC的何處,是否都有OE⊥SF?請(qǐng)證明你的結(jié)論;
(3)求二面角B-AS-C的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年北京市東城區(qū)示范校高三(上)12月聯(lián)考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,在三棱錐S-ABC中,側(cè)面SAC與底面ABC垂直,E,O分別是SC、AC的中點(diǎn),SA=SC=,BC=AC,∠ASC=∠ACB=90°.
(1)求證:OE∥平面SAB;
(2)若點(diǎn)F在線段BC上,問(wèn):無(wú)論F在BC的何處,是否都有OE⊥SF?請(qǐng)證明你的結(jié)論;
(3)求二面角B-AS-C的平面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案