分析 求出原函數(shù)的導(dǎo)函數(shù),得到f(x)在x=1處的導(dǎo)數(shù),再由f(x)在x=1處的切線與直線x+4y=0垂直,得到f(x)在x=1處的導(dǎo)數(shù)值,從而求得a的值.
解答 解:由f(x)=ax3+x+1,得f′(x)=3ax2+1,
∴f′(1)=3a+1,即f(x)在x=1處的切線的斜率為3a+1,
∵f(x)在x=1處的切線與直線x+4y=0垂直,
∴3a+1=4,即a=1.
故答案為:1.
點(diǎn)評(píng) 本題考查利用導(dǎo)數(shù)求曲線上某點(diǎn)的切線方程,考查了兩直線垂直的條件:斜率之積為-1,是基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8,4,3 | B. | 6,5,4 | C. | 7,5,3 | D. | 8,5,2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | C>b>a | B. | b>c>a | C. | b>a>c | D. | a>b>c |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com