9.若復(fù)數(shù)$z=\frac{2i}{1-i}$(i是虛數(shù)單位),則$\overline z$=( 。
A.-1+iB.-1-iC.1+iD.1-i

分析 直接利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡得答案.

解答 解:∵$z=\frac{2i}{1-i}$=$\frac{2i(1+i)}{(1-i)(1+i)}=\frac{2i(1+i)}{2}=-1+i$,
∴$\overline{z}=-1-i$.
故選:B.

點(diǎn)評 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計算題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求與雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{4}$=1有公共焦點(diǎn),且過點(diǎn)(3$\sqrt{2}$,2)的雙曲線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列函數(shù)中,最小正周期為π且圖象關(guān)于y軸對稱的函數(shù)是( 。
A.$y=cos(2x+\frac{π}{2})$B.y=|sinx|C.$y={sin^2}(x-\frac{π}{4})$D.y=sin2x+cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,已知cosA=$-\frac{1}{4}$.
(Ⅰ)求${sin^2}\frac{B+C}{2}+cos2A$的值;
(Ⅱ)若$a=\sqrt{3}$,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={x|x2-5x-6<0},B={x|-3<x<3},則A∩B=( 。
A.(-3,3)B.(-3,6)C.(-1,3)D.(-3,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知某幾何體的三視圖如圖所示,則該幾何體體積為( 。
A.$\frac{113}{3}$B.$\frac{105}{4}$C.$\frac{104}{3}$D.$\frac{107}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若(x2+ax+y)6(a>0)的展開式中含x2的系數(shù)是66,則展開式中x5y2的項(xiàng)的系數(shù)為( 。
A.240B.480C.-240D.-480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知關(guān)于x的不等式$\frac{{a}^{2}-11-x}{a-x}$>-4和log2(a+1+x)>2log2(a-x)-2的解集分別為A和B,且2∈∁RA,1∈B,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l的傾斜角為α,斜率為k,則“$α<\frac{π}{3}$”是“$k<\sqrt{3}$”的( 。
A.充分非必要條件B.必要非充分條件
C.充要條件D.既非充分也非必要條件

查看答案和解析>>

同步練習(xí)冊答案