假設某城有10000輛家庭汽車,其牌照編號為E00001到E10000,則偶然遇到牌照號碼中有數(shù)字6的汽車的概率約為(    )
A.0.3B.0.34C.0.38D.0.42
B
用A表示“牌照號碼中有6的事件”,用 表示“牌照號碼中不含6的事件”,則A與 是對立事件,則 ,所求概率為.故選B.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

某保險公司利用簡單隨機抽樣方法,對投保車輛進行抽樣,樣本車輛中每輛車的賠付結(jié)果統(tǒng)計如下:
賠付金額(元)
0
1000
2000
3000
4000
車輛數(shù)(輛)
500
130
100
150
120
(1)若每輛車的投保金額均為2800元,估計賠付金額大于投保金額的概率;
(2)在樣本車輛中,車主是新司機的占,在賠付金額為4000元的樣本車輛中,車主是新司機的占,(3)估計在已投保車輛中,新司機獲賠金額為4000元的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知一個矩形由三個相同的小矩形拼湊而成(如圖所示),用三種不同顏色給3個小矩形涂色,每個小矩形只涂一種顏色,求:

(1)3個矩形都涂同一顏色的概率;
(2)3個小矩形顏色都不同的概率.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

在兩個袋內(nèi),分別寫著裝有、、、、六個數(shù)字的張卡片,今從每個袋中各取一張卡片,則兩數(shù)之和等于9的概率為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

先后拋擲兩枚均勻的骰子,若骰子朝上一面的點數(shù)依次是,則的概率是               

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關.某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:
品牌

 
 

 
首次出現(xiàn)故障時間x(年)
0<x≤1
1<x≤2
x>2
0<x≤2
x>2
轎車數(shù)量(輛)
2
3
45
5
45
每輛利潤(萬元)
1
2
3
1.8
2.9
 
將頻率視為概率,解答下列問題:
(1)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率;
(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列;
(3)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟效益的角度考慮,你認為應生產(chǎn)哪種品牌的轎車?說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

記a,b分別是投擲兩次骰子所得的數(shù)字,則方程有兩個不同實根的概率為(  。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

有編號分別為1,2,3,4,5的5個紅球和5個黑球,從中取出4個,則取出的編號互不相同的概率              .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

某聯(lián)歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分;方案乙的中獎率為,中獎可以得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結(jié)束后憑分數(shù)兌換獎品.若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為X,求X≤3的概率.

查看答案和解析>>

同步練習冊答案