20.下列程序的功能是( 。
S=1
i=1
WHILE S<=2012
i=i+2
S=S×i
WEND
PRINT i
END.
A.計(jì)算1+3+5+…+2012
B.計(jì)算1×3×5×…×2012
C.求方程1×3×5×…×i=2012中的i值
D.求滿足1×3×5×…×i>2012的最小整數(shù)i

分析 根據(jù)程序,可得程序的功能.

解答 解:由題意,程序的作用是求滿足1×3×5×…×i>2012的最小整數(shù)i,
故選D.

點(diǎn)評(píng) 本題考查循環(huán)結(jié)構(gòu)的程序框圖的理解及應(yīng)用、利用程序語(yǔ)言編寫程序,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.一個(gè)水平放置的三角形的面積是$\frac{\sqrt{6}}{2}$,則其直觀圖面積為( 。
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=a3-x+1,(a>0且a≠1),則函數(shù)f(x)的圖象恒過(guò)定點(diǎn)(3,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知△ABC的內(nèi)角A,B,C滿足sinC[cos(A-B)+cosC]=$\frac{1}{4}$,面積S滿足1≤S≤2,記a,b,c分別為A,B,C所對(duì)的邊,則下列不等式一定成立的是( 。
A.bc(b+c)≤8B.bc(b+c)>8C.12≤abc≤24D.6≤abc≤12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=sin2x+2cos2x-1,有下列四個(gè)結(jié)論:
①函數(shù)f(x)在區(qū)間[-$\frac{3π}{8}$,$\frac{π}{8}$]上是增函數(shù);
②點(diǎn)($\frac{3π}{8}$,0)是函數(shù)f(x)圖象的一個(gè)對(duì)稱中心;
③函數(shù)f(x)的圖象可以由函數(shù)y=$\sqrt{2}$sin2x的圖象向左平移$\frac{π}{4}$得到;
④若x∈[0,$\frac{π}{2}$],則f(x)的值域?yàn)閇0,$\sqrt{2}$].
則所有正確結(jié)論的序號(hào)是①②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.在直角三角形ABC中,∠A=$\frac{π}{6}$,過(guò)直角頂點(diǎn)C作射線CM交線段AB于M,則AM>AC的概率為( 。
A.$1-\frac{{\sqrt{3}}}{2}$B.$\sqrt{3}-1$C.$\frac{1}{6}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖,從參加環(huán)保知識(shí)競(jìng)賽的學(xué)生中抽出60名,將其成績(jī)(均為整數(shù))整理后畫出的頻率分布直方圖如圖:觀察圖形,回答下列問(wèn)題:

(1)79.5~89.5這一組的頻數(shù)、頻率分別是多少?
(2)樣本的眾數(shù)、中位數(shù)的估計(jì)值分別是多少?(保留小數(shù)點(diǎn)后三位)
(3)估計(jì)這次環(huán)保知識(shí)競(jìng)賽的及格率(60分及以上為及格).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.若函數(shù)f(x)=lnx-ax在區(qū)間(1,+∞)上是單調(diào)減函數(shù),則a的取值范圍是$\underline{[{1,+∞})}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在△ABC中,tanA=$\frac{3}{4}$,tan(A-B)=-$\frac{1}{3}$,則tanC的值為$\frac{79}{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案