10.一個水平放置的三角形的面積是$\frac{\sqrt{6}}{2}$,則其直觀圖面積為( 。
A.$\frac{\sqrt{6}}{4}$B.$\frac{\sqrt{6}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{\sqrt{3}}{4}$

分析 設水平放置的三角形的底邊長為a,高為b,則其直觀圖的底邊長為a,高為$\frac{\sqrt{2}}{4}b$,由此能求出結果.

解答 解:設水平放置的三角形的底邊長為a,高為b,
∵一個水平放置的三角形的面積是$\frac{\sqrt{6}}{2}$,
∴$\frac{1}{2}ab=\frac{\sqrt{6}}{2}$,
∵其直觀圖的底邊長為a,高為$\frac{\sqrt{2}}{4}b$,
∴其直觀圖面積為S=$\frac{1}{2}a×\frac{\sqrt{2}}{4}b$=$\frac{\sqrt{2}}{4}×\frac{\sqrt{6}}{2}$=$\frac{\sqrt{3}}{4}$.
故選:D.

點評 本題考查三角形的直觀圖的面積的求法,是基礎題,解題時要認真審題,注意直觀圖的性質的合理運用.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.等差數(shù)列{an}的前m項的和是14,前2m項的和是62,則它的前3m項的和是( 。
A.124B.134C.144D.154

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.下列函數(shù)中為偶函數(shù)的是( 。
A.y=x2-2xB.y=|lgx|C.y=3x+3-xD.y=$\frac{x}{{2}^{x}}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=a+2t}\\{y=4t}\end{array}\right.$(t為參數(shù)),圓C的參數(shù)方程為$\left\{\begin{array}{l}x=2+cosθ\\ y=sinθ\end{array}\right.$(θ為常數(shù)).
(1)求直線l和圓C的普通方程;
(2)若直線l與圓C有公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.已知i是虛數(shù)單位,復數(shù)z(1-i)=i2014,則z的共軛復數(shù)為( 。
A.-$\frac{1}{2}$+$\frac{1}{2}$iB.$\frac{1}{2}$+$\frac{1}{2}$iC.$\frac{1}{2}$-$\frac{1}{2}$iD.-$\frac{1}{2}$-$\frac{1}{2}$i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知f(n)=cos$\frac{nπ}{2}$,則f(1)+f(2)+…+f(2014)+f(2015)=-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知函數(shù)f(x)=x2-2x,g(x)=2x+a,若對于任意x1∈[-1,2],均存在x2∈[-1,2],使得f(x1)=g(x2),則實數(shù)a的取值范圍是( 。
A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[-1,2]D.[3,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知二次方程x2+x-1=0的兩根為α,β,求值:
(1)α33;    
(2)α22

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列程序的功能是(  )
S=1
i=1
WHILE S<=2012
i=i+2
S=S×i
WEND
PRINT i
END.
A.計算1+3+5+…+2012
B.計算1×3×5×…×2012
C.求方程1×3×5×…×i=2012中的i值
D.求滿足1×3×5×…×i>2012的最小整數(shù)i

查看答案和解析>>

同步練習冊答案