在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,若a=ccosB,則△ABC是( 。
分析:利用正弦定理將a=ccosB轉(zhuǎn)化為sinA=sinCcosB再判斷即可.
解答:解:∵在△ABC中,a=ccosB,
∴由正弦定理得:sinA=sinCcosB,又sinA=sin(B+C),
∴sin(B+C)=sinCcosB,
即sinBcosC+sinCcosB=sinCcosB,
∴sinBcosC=0,
∵在△ABC中,sinB≠0,
∴cosC=0,
∴C=
π
2

∴△ABC是直角三角形.
故選C.
點(diǎn)評(píng):本題考查三角形的形狀判斷,考查正弦定理的應(yīng)用,考查三角函數(shù)間的關(guān)系,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天津)在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知a=2,c=
2
,cosA=-
2
4

(1)求sinC和b的值;
(2)求cos(2A+
π
3
)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A、B、C所對(duì)邊長(zhǎng)分別為a、b、c,已知a2-c2=b,且sinAcosC=3cosAsinC,則b=
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,且a,b是方程x2-2
3
x+2=0的兩根,2cos(A+B)=1,則△ABC的面積為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c.已知A=45°,a=6,b=3
2
,則B的大小為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,已知B=60°,不等式x2-4x+1<0的解集為{x|a<x<c},則b=
13
13

查看答案和解析>>

同步練習(xí)冊(cè)答案