設f(x)=2cosx,則f′(
π6
)
等于
 
分析:本題先對已知函數(shù)f(x)進行求導,再將
π
6
代入導函數(shù)解之即可.
解答:解:f'(x)=-2sinx
f'(
π
6
)=-2×
1
2
=-1,
故答案為:-1.
點評:本題主要考查了導數(shù)的運算,以及求函數(shù)值,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2cos(2x+
π
3
)+
3
(sinx+cosx)2
(Ⅰ)求函數(shù)f(x)的最大值和最小正周期;
(Ⅱ)設A,B,C為△ABC的三個內角,若cosB=
1
3
,f(
π
4
+
C
2
)=
3
2
,且C為銳角,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=2cos(
π
4
 x+
π
3
),若對任意的x∈R,恒有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知向量
m
=(cosx,1-asinx),
n
=(cosx,2),設f(x)=
m
n
,且函數(shù)f(x)的最大值為g(a).
(Ⅰ)求函數(shù)g(a)的解析式.
(Ⅱ)設0≤θ≤2π,求函數(shù)(2cosθ+1)的最大值和最小值以及對應的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•煙臺一模)設ω是正實數(shù),函數(shù)f(x)=2cosωx在x∈[0,
3
]
上是減函數(shù),那么ω的值可以是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,向量
m
=(cos 
π
6
,cos(π-A)-1),
n
=(2cos(
π
2
-A),2sin 
π
6
),且
m
n

(1)求角A的大小.
(2)設f(x)=cos2x+2sinAsinxcosx,求f(x)的最小正周期,求當 x ∈[-
π
4
,
π
2
]
時f(x)的值域.

查看答案和解析>>

同步練習冊答案