15.等比數(shù)列1,a1,a2,a3,…,a2n,2共有2n+2項(xiàng),則a1•a2•a3…a2n=2n

分析 1,a1,a2,a3,…,a2n,2是等比數(shù)列,利用等比數(shù)列的性質(zhì)可得:1×2=a1•a2n=a2•a2n-1=…=anan+1,即可得出.

解答 解:∵1,a1,a2,a3,…,a2n,2是等比數(shù)列,
∴1×2=a1•a2n=a2•a2n-1=…=anan+1,
∴a1•a2•a3…a2n=$({a}_{n}{a}_{n+1})^{n}$=2n
故答案為:2n

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={x|x2+ax+12=0},B={x|x2+bx+c=0},A∩B={2},A∪B={2,6},求a,b,c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知{an}為等差數(shù)列,且a6=4,則a4a7的最大值為( 。
A.8B.10C.18D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.用描述法表示下列各集合:
(1)被3除余2的自然數(shù)組成的集合;
(2)大于-3且小于9的所有整數(shù)組成的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)f(x)的定義域是[$\frac{1}{2}$,1],則函數(shù)f(2x)的定義域?yàn)閇-1,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.等差數(shù)列{an}的前n項(xiàng)之和為Sn,a1=1,S10=100,若有數(shù)列{bn},滿足an=log2bn,則b1+b2+b3+b4+b5=(  )
A.682B.782C.786D.802

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若行列式$|\begin{array}{l}{-1}&{5}&{x}\\{1}&{x}&{3}\\{7}&{8}&{9}\end{array}|$中,元素-1的代數(shù)余子式大于0,則x滿足的條件是x>$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=2lnx-x2
(1)討論f(x)的單調(diào)性并求最大值;
(2)設(shè)g(x)=xex-(a-1)x2-x-2lnx,若f(x)+g(x)≥0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.求函數(shù)f(θ)=$\frac{1}{si{n}^{2}θ}$+$\frac{9}{co{s}^{2}θ}$,θ∈(0,$\frac{π}{2}$)的最小值.

查看答案和解析>>

同步練習(xí)冊(cè)答案