(14分)已知點(diǎn)是函數(shù))的圖象上一點(diǎn),等比數(shù)列的前項(xiàng)和為,數(shù)列的首項(xiàng)為 ,且前項(xiàng)和滿足
(1)求數(shù)列的通項(xiàng)公式;
(2)若數(shù)列{項(xiàng)和為,問>的最小正整數(shù)是多少? .
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)
已知數(shù)列
(1)設(shè)的通項(xiàng)公式;
(2)設(shè)恒成立,求k的最小值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)已知由正數(shù)組成的數(shù)列{an}的前n項(xiàng)和為Sn=,
①求S1S2,S3;
②猜想Sn的表達(dá)式,并用數(shù)學(xué)歸納法證明你的結(jié)論;
③求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在數(shù)列{an}中,a1=1,當(dāng)n≥2時(shí),an,Sn,Sn成等比數(shù)列 
(1)求a2,a3,a4,并推出an的表達(dá)式;
(2)用數(shù)學(xué)歸納法證明所得的結(jié)論;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(12分)在公差為的等差數(shù)列和公比為的等比數(shù)列中,已知,.
(Ⅰ)求數(shù)列的通項(xiàng)公式;
(Ⅱ)是否存在常數(shù),使得對于一切正整數(shù),都有成立?若存在,求出常數(shù),若不存在說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)(注意:在試題卷上作答無效)
設(shè)數(shù)列的前項(xiàng)和為,對一切,點(diǎn)都在函數(shù) 的圖象上.
(Ⅰ)求及數(shù)列的通項(xiàng)公式;
(Ⅱ) 將數(shù)列依次按1項(xiàng)、2項(xiàng)、3項(xiàng)、4項(xiàng)循環(huán)地分為(),(,),(,,),(,,,);(),(),(,,),(,,);(),…,分別計(jì)算各個(gè)括號內(nèi)各數(shù)之和,設(shè)由這些和按原來括號的前后順序構(gòu)成的數(shù)列為,求的值;
(Ⅲ)令),求證:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知等差數(shù)列,滿足,若數(shù)列滿足,則 的通項(xiàng)公式______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知等差數(shù)列{}的前n項(xiàng)和為,若,則="             " (   )
A.68B.72 C.54D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個(gè)類似于楊輝三角的三角形數(shù)組(如下圖)滿足:(1)第1行只有1個(gè)數(shù)1;
(2)當(dāng)n≥2時(shí),第n行首尾兩數(shù)均為n;  (3)當(dāng)n>2時(shí),中間各數(shù)都等于它肩上兩數(shù)之和,則第n行(n≥2)第2個(gè)數(shù)是_______________
1
2             2
3          4         3
4          7           7        4
…………………………………………………………

查看答案和解析>>

同步練習(xí)冊答案