【題目】已知橢圓的離心率為,以橢圓的上焦點(diǎn)為圓心,橢圓的短半軸為半徑的圓與直線截得的弦長(zhǎng)為.

(1)求橢圓的方程;

(2)過橢圓左頂點(diǎn)做兩條互相垂直的直線,,且分別交橢圓于兩點(diǎn)(,不是橢圓的頂點(diǎn)),探究直線是否過定點(diǎn),若過定點(diǎn)則求出定點(diǎn)坐標(biāo),否則說明理由.

【答案】(1) (2) 恒過定點(diǎn),見解析

【解析】

(1)由題得,,解方程組即得橢圓的方程;(2)設(shè)的方程為,的方程為,當(dāng)斜率存在時(shí),的方程為,過定點(diǎn),當(dāng)MN的斜率不存在時(shí),也過定點(diǎn). 即得解.

(1)∵,∴,

設(shè)圓的方程為,圓心為,半徑為

設(shè)為圓心到直線的距離,

,

,

,即,

,∵,∴.

所以橢圓的方程為.

(2)設(shè)的方程為,的方程為,

聯(lián)立,可得

整理,設(shè)

不是橢圓的頂點(diǎn),

,

代入,得,

,

聯(lián)立 ,設(shè),

,

帶入,得

,

①若斜率存在,

,

恒過.

②若斜率不存在,

的方程為,的方程為,

,此時(shí),亦過,

綜上,直線恒過.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】南方智運(yùn)汽車公司在我市推出了共享汽車“Warmcar”,有一款車型為眾泰云新能源共享汽車,其中一種租用方式分時(shí)計(jì)費(fèi)規(guī)則為:0.15/分鐘+0.8/公里.已知小李家離上班地點(diǎn)為10公里,每天租用該款汽車上、下班各一次,由于堵車、及紅綠燈等原因每次路上開車花費(fèi)的時(shí)間(分鐘)是一個(gè)隨機(jī)變量,現(xiàn)統(tǒng)計(jì)了100次路上開車花費(fèi)時(shí)間,在各時(shí)間段內(nèi)是頻數(shù)分布情況如下表所示:

時(shí)間(分鐘)

頻數(shù)

2

6

14

36

28

10

4

(1)寫出小李上班一次租車費(fèi)用(元)與用車時(shí)間(分鐘)的函數(shù)關(guān)系;

(2)根據(jù)上面表格估計(jì)小李平均每次租車費(fèi)用;

(3)“眾泰云新能源汽車還有一種租用方式為按月計(jì)費(fèi),規(guī)則為每個(gè)月收取租金2350元,若小李每個(gè)月上班時(shí)間平均按21天計(jì)算,在不計(jì)電費(fèi)和情況下,請(qǐng)你為小李選擇一種省錢的租車方式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法:①若線性回歸方程為,則當(dāng)變量增加一個(gè)單位時(shí),一定增加3個(gè)單位;②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都加上同一個(gè)常數(shù)后,方差不會(huì)改變;③線性回歸直線方程必過點(diǎn);④抽簽法屬于簡(jiǎn)單隨機(jī)抽樣;其中錯(cuò)誤的說法是(

A.①③B.②③④C.D.①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來,某地區(qū)積極踐行“綠水青山就是金山銀山”的綠色發(fā)展理念年年初至年年初,該地區(qū)綠化面積(單位:平方公里)的數(shù)據(jù)如下表:

年份

年份代號(hào)

綠化面積

(1)求關(guān)于的線性回歸方程;

(2)利用(1)中的回歸方程,預(yù)測(cè)該地區(qū)年年初的綠化面積,并計(jì)算年年初至年年初,該地區(qū)綠化面積的年平均增長(zhǎng)率約為多少.

(附:回歸直線的斜率與截距的最小二乘法估計(jì)公式分別為,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】依照某發(fā)展中國(guó)家2018年的官方資料,將該國(guó)所有家庭按年收入從低到高的順序平均分為五組,依次為第一組至第五組,各組家庭的年收入總和占該國(guó)全部家庭的年收入總和的百分比如圖所示.

以下關(guān)于該國(guó)2018年家庭收入的判斷,一定正確的是( )

A. 至少有的家庭的年收入都低于全部家庭的平均年收入

B. 收入最低的那的家庭平均年收入為全部家庭平均年收入的

C. 收入最高的那的家庭年收入總和超過全部家庭年收入總和的

D. 收入最低的那的家庭年收入總和超過全部家庭年收入總和的

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在乎面直角坐標(biāo)系中,直線:(為參數(shù)),以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸,且取相同的單位長(zhǎng)度建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

1)求直線的普通方程及曲線的直角坐標(biāo)方程;

2)設(shè)點(diǎn)的直角坐標(biāo)為,直線與曲線交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】中,的角平分線所在直線為邊的高線所在直線為,邊的高線所在直線為

1)求直線的方程;

2)求直線的方程;

3)求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某車間有5名工人其中初級(jí)工2人,中級(jí)工2人,高級(jí)工1現(xiàn)從這5名工人中隨機(jī)抽取2名.

求被抽取的2名工人都是初級(jí)工的概率;

求被抽取的2名工人中沒有中級(jí)工的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案