【題目】已知函數(shù),圖象的相鄰兩條對稱軸之間的距離是,其中一個最高點為.
(1)求函數(shù)的解析式;
(2)求函數(shù)在上的單調遞增區(qū)間;
(3)若對于任意的恒成立,求的取值范圍.
【答案】(1);(2)遞增區(qū)間和;(3).
【解析】
(1)根據(jù)函數(shù)圖象的最高點的坐標求出的值,結合題意求出該函數(shù)的最小正周期,可求出的值,再將點的坐標代入函數(shù)的解析式,結合的取值范圍可求出的值,從而可得出函數(shù)的解析式;
(2)求出函數(shù)在上的單調區(qū)間,再與區(qū)間取交集可得出函數(shù)在上的單調遞增區(qū)間;
(3)由題意得出,求出函數(shù)在區(qū)間上的最小值,即可得出實數(shù)的取值范圍.
(1)由于函數(shù)的圖象的一個最高點坐標為,則,得.
設該函數(shù)的最小正周期為,則,所以,,得,
此時,
將點的坐標代入函數(shù)的解析式得,,
,,則,,解得.
因此,;
(2)令,解得,
所以,函數(shù)的單調遞增區(qū)間為,
,
因此,函數(shù)在上的單調遞增區(qū)間為和;
(3)恒成立,等價于恒成立,
,則,
當,即時,該函數(shù)取得最小值,即,.
因此,實數(shù)的取值范圍是.
科目:高中數(shù)學 來源: 題型:
【題目】下表為年至年某百貨零售企業(yè)的線下銷售額(單位:萬元),其中年份代碼年份.
年份代碼 | ||||
線下銷售額 |
(1)已知與具有線性相關關系,求關于的線性回歸方程,并預測年該百貨零售企業(yè)的線下銷售額;
(2)隨著網絡購物的飛速發(fā)展,有不少顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長表示懷疑,某調查平臺為了解顧客對該百貨零售企業(yè)的線下銷售額持續(xù)增長的看法,隨機調查了位男顧客、位女顧客(每位顧客從“持樂觀態(tài)度”和“持不樂觀態(tài)度”中任選一種),其中對該百貨零售企業(yè)的線下銷售額持續(xù)增長持樂觀態(tài)度的男顧客有人、女顧客有人,能否在犯錯誤的概率不超過的前提下認為對該百貨零售企業(yè)的線下銷售額持續(xù)增長所持的態(tài)度與性別有關?
參考公式及數(shù)據(jù):
.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,在四棱錐中, 平面,底面是菱形, , , . 為與的交點, 為棱上一點,
(1)證明:平面⊥平面;
(2)若三棱錐的體積為,
求證: ∥平面.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,四邊形ABCD是菱形,∠BCD=120°,PA⊥底面ABCD,PA=4,AB=2.
(I)求證:平面PBD⊥平面PAC;
(Ⅱ)過AC的平面交PD于點M若平面AMC把四面體P﹣ACD分成體積相等的兩部分,求二面角A﹣MC﹣P的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】現(xiàn)有甲、乙等5人排成一排照相,按下列要求各有多少種不同的排法?求:
(1)甲、乙不能相鄰;
(2)甲、乙相鄰且都不站在兩端;
(3)甲、乙之間僅相隔1人;
(4)按高個子站中間,兩側依次變矮(五人個子各不相同)的順序排列.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】央視傳媒為了解央視舉辦的“朗讀者”節(jié)目的收視時間情況,隨機抽取了某市名觀眾進行調查,其中有名男觀眾和名女觀眾,將這名觀眾收視時間編成如圖所示的莖葉圖(單位:分鐘),收視時間在分鐘以上(包括分鐘)的稱為“朗讀愛好者”,收視時間在分鐘以下(不包括分鐘)的稱為“非朗讀愛好者”.規(guī)定只有女“朗讀愛好者”可以參加央視競選.
(1)若采用分層抽樣的方法從“朗讀愛好者”和“非朗讀愛好者”中隨機抽取名,再從這名觀眾中任選名,求至少選到名“朗讀愛好者”的概率;
(2)若從所有的“朗讀愛好者”中隨機抽取名,求抽到的名觀眾中能參加央視競選的人數(shù)的分布列及其數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: 的離心率為,點為左焦點,過點作軸的垂線交橢圓于、兩點,且.
(1)求橢圓的方程;
(2)若是橢圓上異于點的兩點,且直線的傾斜角互補,則直線的斜率是否為定值?若是,求出這個定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】(2017湖北部分重點中學高三聯(lián)考)從編號為001,002,…,500的500個產品中用系統(tǒng)抽樣的方法抽取一個樣本,已知樣本編號從小到大依次為007,032,…,則樣本中最大的編號應該為( )
A. 483 B. 482
C. 481 D. 480
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線段PD上是否存在一點N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點N的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com