設(shè)二次函數(shù)在[3,4]上至少有一個零點(diǎn),求的最小值。
的最小值為。
解析試題分析:解法1 由已知得,設(shè)為二次函數(shù)在[3,4]上的零點(diǎn),則有,
變形, 5分
于是, 12分
因為是減函數(shù),上述式子在時取等號,
故的最小值為。 17分
解法2 把等式看成關(guān)于的直線方程,
利用直線上一點(diǎn)()到原點(diǎn)的距離大于原點(diǎn)到直線的距離,
即(以下同上)。
考點(diǎn):函數(shù)零點(diǎn)的概念,二次函數(shù)的圖象和性質(zhì),“對號函數(shù)”的單調(diào)性。
點(diǎn)評:中檔題,根據(jù)函數(shù)零點(diǎn)所在范圍,確定得到關(guān)于零點(diǎn)t的函數(shù),轉(zhuǎn)化成“對號函數(shù)”問題求解,對轉(zhuǎn)化與化歸思想要求較高。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
二次函數(shù)f(x)滿足f (x+1)-f (x)=2x且f (0)=1.
⑴求f (x)的解析式;
⑵在區(qū)間[-1,1]上,y=f (x)的圖象恒在y=2x+m的圖象上方,試確定實數(shù)m的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
提高過江大橋的車輛通行能力可改善整個城市的交通狀況.在一般情況下,大橋上的車流速度(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車流速度為0千米/小時;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米/小時.研究表明:當(dāng)時,車流速度是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時)可以達(dá)到最大,并求出最大值.(精確到1輛/小時)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某商場在店慶一周年開展“購物折上折活動”:商場內(nèi)所有商品按標(biāo)價的八折出售,折后價格每滿500元再減100元.如某商品標(biāo)價為1500元,則購買該商品的實際付款額為1500×0.8-200=1000(元).設(shè)購買某商品得到的實際折扣率.設(shè)某商品標(biāo)價為元,購買該商品得到的實際折扣率為.
(Ⅰ)寫出當(dāng)時,關(guān)于的函數(shù)解析式,并求出購買標(biāo)價為1000元商品得到的實際折扣率;
(Ⅱ)對于標(biāo)價在[2500,3500]的商品,顧客購買標(biāo)價為多少元的商品,可得到的實際折扣率低于?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
某單位設(shè)計的兩種密封玻璃窗如圖所示:圖1是單層玻璃,厚度為8 mm;圖2是雙層中空玻璃,厚度均為4 mm,中間留有厚度為的空氣隔層.根據(jù)熱傳導(dǎo)知識,對于厚度為的均勻介質(zhì),兩側(cè)的溫度差為,單位時間內(nèi),在單位面積上通過的熱量,其中為熱傳導(dǎo)系數(shù).假定單位時間內(nèi),在單位面積上通過每一層玻璃及空氣隔層的熱量相等.(注:玻璃的熱傳導(dǎo)系數(shù)為,空氣的熱傳導(dǎo)系數(shù)為.)
(1)設(shè)室內(nèi),室外溫度均分別為,,內(nèi)層玻璃外側(cè)溫度為,外層玻璃內(nèi)側(cè)溫度為,且.試分別求出單層玻璃和雙層中空玻璃單位時間內(nèi),在單位面積上通過的熱量(結(jié)果用,及表示);
(2)為使雙層中空玻璃單位時間內(nèi),在單位面積上通過的熱量只有單層玻璃的4%,應(yīng)如何設(shè)計的大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),其中常數(shù)a > 0.
(1) 當(dāng)a = 4時,證明函數(shù)f(x)在上是減函數(shù);
(2) 求函數(shù)f(x)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)命題:函數(shù)在上為減函數(shù), 命題的值域為,命題函數(shù)定義域為
(1)若命題為真命題,求的取值范圍。
(2)若或為真命題,且為假命題,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù)f(x)=.
(Ⅰ)求f(x)的單調(diào)區(qū)間;
(Ⅱ)證明:當(dāng)f(x1)=f(x2)(x1≠x2)時,x1+x2<0.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知函數(shù),g(x)=,a,b∈R.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)記函數(shù)h(x)=f(x)+g(x),當(dāng)a=0時,h(x)在(0,1)上有且只有一個極值點(diǎn),求實數(shù)b的取值范圍;
(3)記函數(shù)F(x)=|f(x)|,證明:存在一條過原點(diǎn)的直線l與y=F(x)的圖象有兩個切點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com