精英家教網 > 高中數學 > 題目詳情
11.已知${log_{\frac{2}{3}}}a<1$,則a的取值范圍是( 。
A.(0,1)B.(0,$\frac{2}{3}$)C.($\frac{2}{3}$,1)D.($\frac{2}{3}$,+∞)

分析 把不等式兩邊化為同底數,然后利用對數函數的單調性求得a的取值范圍.

解答 解:由${log_{\frac{2}{3}}}a<1$,得$lo{g}_{\frac{2}{3}}a$<$lo{g}_{\frac{2}{3}}\frac{2}{3}$,即a>$\frac{2}{3}$.
∴a的取值范圍是($\frac{2}{3}$,+∞).
故選:D.

點評 本題考查對數不等式的解法,是基礎題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

1.已知x,y滿足$\left\{\begin{array}{l}{y≥x}\\{x+y≤a(a>0)}\\{x≥1}\end{array}\right.$,則$\frac{y}{x}$的最大值為3,則a的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

2.已知向量$\overrightarrow{a}$=($\sqrt{3}$,cos4ωx),$\overrightarrow$=(sin4ωx,1)(ω>0),令f(x)=$\overrightarrow{a}$•$\overrightarrow$且f(x)的周期為$\frac{π}{2}$.
(1)求函數f(x)的解析式;
(2)若x∈[0,$\frac{π}{4}$]時f(x)+m≤2,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

19.若實數x,y滿足約束條件$\left\{\begin{array}{l}2x-y-2≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$,則$\frac{x}{y}$的取值范圍是[$\frac{1}{2}$,$\frac{3}{2}$].

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.關于x的不等式ax2+bx+c>0的解集為{x|2<x<3},則關于x的不等式cx2-bx+a<0的解集為(-∞,-$\frac{1}{6}$)∪(1,+∞).

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.如圖,要給①,②,③,④四塊區(qū)域分別涂上五種不同顏色中的某一種,允許同一種顏色使用多次,但相鄰區(qū)域必須涂不同顏色,則不同的涂色方法種數為(  )
A.320B.160C.96D.60

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

3.已知四棱錐P-ABCD的底面是正方形,PA⊥底面AC,PA=2AD=2,則它外接球表面積為( 。
A.$\sqrt{6}$πB.C.$\frac{3}{2}$πD.$\frac{\sqrt{6}}{3}$π

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

20.已知x>1,函數y=$\frac{4}{x-1}$+x的最小值是( 。
A.5B.4C.8D.6

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

1.設F是雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點,過點F向C的一條漸近線引垂線,垂足為A,交另一條漸近線于點B.若2$\overrightarrow{AF}$=-$\overrightarrow{FB}$,則雙曲線C的離心率是( 。
A.$\sqrt{2}$B.2C.$\frac{2\sqrt{3}}{3}$D.$\frac{\sqrt{14}}{3}$

查看答案和解析>>

同步練習冊答案