14.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某四棱錐的三視圖,則該四棱錐的外接球的表面積為( 。
A.136πB.34πC.25πD.18π

分析 由四棱錐的三視圖知該四棱錐是四棱錐P-ABCD,其中ABCD是邊長為3的正方形,PA⊥面ABCD,且PA=4,從而該四棱錐的外接球就是以AB,AC,AP為棱的長方體的外接球,由此能求出該四棱錐的外接球的表面積.

解答 解:由四棱錐的三視圖知該四棱錐是如圖所示的四棱錐P-ABCD,
其中ABCD是邊長為3的正方形,PA⊥面ABCD,且PA=4,
∴該四棱錐的外接球就是以AB,AD,AP為棱的長方體的外接球,
∴該四棱錐的外接球的半徑R=$\frac{\sqrt{9+9+16}}{2}$=$\frac{\sqrt{34}}{2}$,
∴該四棱錐的外接球的表面積S=4πR2=4π×$\frac{34}{4}$=34π.
故選:B.

點(diǎn)評 本題考查球的表面積的求法,是中檔題,解題時要認(rèn)真審題,注意球、四棱錐、幾何體的三視圖的性質(zhì)及構(gòu)造法的合理應(yīng)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知集合A={1,2,3},B={-1,0,1},滿足條件f(3)=f(1)+f(2)的映射f:A→B的個數(shù)是(  )
A.2B.4C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.log${\;}_{\frac{1}{2}}$|x-$\frac{π}{3}$|≥log${\;}_{\frac{1}{2}}$$\frac{π}{2}$的解集為( 。
A.{x|-$\frac{π}{6}$≤x≤$\frac{5}{6}$π}B.{x|x≤-$\frac{π}{6}$,或x≥$\frac{5}{6}$π}
C.{x|-$\frac{π}{6}$≤x≤$\frac{5}{6}$π且x≠$\frac{π}{3}$}D.{x|-$\frac{5π}{6}$≤x≤$\frac{5π}{6}$且x≠$\frac{π}{3}$}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.定義A*B,B*C,C*D,D*A的運(yùn)算分別對應(yīng)下面圖中的(1),(2),(3),(4),則圖中,a,b對應(yīng)的運(yùn)算是( 。
A.B*D,A*DB.B*D,A*CC.B*C,A*DD.C*D,A*D

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.直線l的參數(shù)方程為$\left\{\begin{array}{l}x=2t-1\\ y=2t+1\end{array}\right.$(t為參數(shù)),圓C的圓心為C(0,1),且與x軸相切,若l與圓C交于A、B兩點(diǎn),則△ABC的面積為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在△ABC中,BC:AB=2:$\sqrt{3}$,∠B=30°,則∠C=( 。
A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)的定義在R上的奇函數(shù),當(dāng)x>0時,f(x)=1+ax(a>0)且a≠1),若f(-1)=-$\frac{3}{2}$,則a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知函數(shù)①f(x)=x2;②f(x)=ex③f(x)=lnx ④f(x)=cosx.其中對于f(x)定義域內(nèi)的 任意一個xl都存在唯一的x2,使f(x1) f(x2)=l成立的函數(shù)是( 。
A.B.C.②③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若曲線f(x)=$\sqrt{x}$在點(diǎn)(a,f(a))處的切線與兩坐標(biāo)軸圍成的圖形的面積為$\frac{1}{4}$,則a的值為1.

查看答案和解析>>

同步練習(xí)冊答案