【題目】我國(guó)古代的天文學(xué)和數(shù)學(xué)著作《周髀算經(jīng)》中記載:一年有二十四個(gè)節(jié)氣,每個(gè)節(jié)氣晷(guǐ)長(zhǎng)損益相同(晷是按照日影測(cè)定時(shí)刻的儀器,晷長(zhǎng)即為所測(cè)量影子的長(zhǎng)度).二十四節(jié)氣及晷長(zhǎng)變化如圖所示,相鄰兩個(gè)節(jié)氣晷長(zhǎng)的變化量相同,周而復(fù)始.若冬至晷長(zhǎng)一丈三尺五寸,夏至晷長(zhǎng)一尺五寸(一丈等于十尺,一尺等于十寸),則夏至之后的那個(gè)節(jié)氣(小暑)晷長(zhǎng)是( )
A.五寸
B.二尺五寸
C.三尺五寸
D.四尺五寸
【答案】A
【解析】解:設(shè)晷影長(zhǎng)為等差數(shù)列{an},公差為d,a1=135,a13=15,
則135+12d=15,解得d=﹣10.
∴a14=135﹣10×13=5
∴《易經(jīng)》中所記錄的驚蟄的晷影長(zhǎng)是5寸.
故選:A.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等差數(shù)列的通項(xiàng)公式(及其變式)的相關(guān)知識(shí),掌握通項(xiàng)公式:或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某單位附近只有甲,乙兩個(gè)臨時(shí)停車(chē)場(chǎng),它們各有50個(gè)車(chē)位,為了方便市民停車(chē),某互聯(lián)網(wǎng)停車(chē)公司對(duì)這兩個(gè)停車(chē)場(chǎng)在工作日某些固定時(shí)刻的剩余停車(chē)位進(jìn)行記錄,如下表:
時(shí)間 | 8點(diǎn) | 10點(diǎn) | 12點(diǎn) | 14點(diǎn) | 16點(diǎn) | 18點(diǎn) |
停車(chē)場(chǎng)甲 | 10 | 3 | 12 | 6 | 12 | 17 |
停車(chē)場(chǎng)乙 | 13 | 4 | 3 | 2 | 6 | 19 |
如果表中某一時(shí)刻停車(chē)場(chǎng)剩余停車(chē)位數(shù)低于總車(chē)位數(shù)的10%,那么當(dāng)車(chē)主驅(qū)車(chē)抵達(dá)單位附近時(shí),該公司將會(huì)向車(chē)主發(fā)出停車(chē)場(chǎng)飽和警報(bào).
(Ⅰ)假設(shè)某車(chē)主在以上六個(gè)時(shí)刻抵達(dá)單位附近的可能性相同,求他收到甲停車(chē)場(chǎng)飽和警報(bào)的概率;
(Ⅱ)從這六個(gè)時(shí)刻中任選一個(gè)時(shí)刻,求甲停車(chē)場(chǎng)比乙停車(chē)場(chǎng)剩余車(chē)位數(shù)少的概率;
(Ⅲ)當(dāng)停車(chē)場(chǎng)乙發(fā)出飽和警報(bào)時(shí),求停車(chē)場(chǎng)甲也發(fā)出飽和警報(bào)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2017年3月27日,一則“清華大學(xué)要求從2017級(jí)學(xué)生開(kāi)始,游泳達(dá)到一定標(biāo)準(zhǔn)才能畢業(yè)”的消息在體育界和教育界引起了巨大反響.游泳作為一項(xiàng)重要的求生技能和運(yùn)動(dòng)項(xiàng)目受到很多人的喜愛(ài).其實(shí),已有不少高校將游泳列為必修內(nèi)容.某中學(xué)為了解2017屆高三學(xué)生的性別和喜愛(ài)游泳是否有關(guān),對(duì)100名高三學(xué)生進(jìn)行了問(wèn)卷調(diào)查,得到如下列聯(lián)表:
喜歡游泳 | 不喜歡游泳 | 合計(jì) | |
男生 | 10 | ||
女生 | 20 | ||
合計(jì) |
已知在這100人中隨機(jī)抽取1人,抽到喜歡游泳的學(xué)生的概率為 .
(Ⅰ)請(qǐng)將上述列聯(lián)表補(bǔ)充完整;
(Ⅱ)判斷是否有99.9%的把握認(rèn)為喜歡游泳與性別有關(guān)?
附:
p(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,設(shè)拋物線(xiàn)E:y2=2px(p>0)的焦點(diǎn)為F,準(zhǔn)線(xiàn)為直線(xiàn)l,點(diǎn)A、B在直線(xiàn)l上,點(diǎn)M為拋物線(xiàn)E第一象限上的點(diǎn),△ABM是邊長(zhǎng)為 的等邊三角形,直線(xiàn)MF的傾斜角為60°.
(1)求拋物線(xiàn)E的方程;
(2)如圖,直線(xiàn)m過(guò)點(diǎn)F交拋物線(xiàn)E于C、D兩點(diǎn),Q(2,0),直線(xiàn)CQ、DQ分別交拋物線(xiàn)E于G、H兩點(diǎn),設(shè)直線(xiàn)CD、GH的斜率分別為k1、k2 , 求 的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)F(﹣1,0),過(guò)直線(xiàn)l:x=﹣2右側(cè)的動(dòng)點(diǎn)P作PA⊥l于點(diǎn)A,∠APF的平分線(xiàn)交x軸于點(diǎn)B,|PA|= |BF|.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過(guò)點(diǎn)F的直線(xiàn)q交曲線(xiàn)C于M,N,試問(wèn):x軸正半軸上是否存在點(diǎn)E,直線(xiàn)EM,EN分別交直線(xiàn)l于R,S兩點(diǎn),使∠RFS為直角?若存在,求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知AD與BC是四面體ABCD中相互垂直的棱,若AD=BC=6,且∠ABD=∠ACD=60°,則四面體ABCD的體積的最大值是( )
A.
B.
C.18
D.36
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)集合 存在正實(shí)數(shù) ,使得定義域內(nèi)任意 都有 .
(1)若 ,試判斷 是否為 中的元素,并說(shuō)明理由;
(2)若 ,且 ,求 的取值范圍;
(3)若 ( ),且 ,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=ex(x﹣b)(b∈R).若存在x∈[ ,2],使得f(x)+xf′(x)>0,則實(shí)數(shù)b的取值范圍是( )
A.(﹣∞, )
B.(﹣∞, )
C.(﹣ , )
D.( ,+∞)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com