已知數(shù)學(xué)公式數(shù)學(xué)公式=(1,1)數(shù)學(xué)公式=(x,1),且數(shù)學(xué)公式,則實(shí)數(shù)x的值是 ________.

-3
分析:利用向量的運(yùn)算法則求出的坐標(biāo),利用向量相等的坐標(biāo)對應(yīng)相等列出方程組,求出x.
解答:∵

,
解得x=-3
故答案為-3.
點(diǎn)評:本題考查向量的運(yùn)算法則及向量相等的坐標(biāo)公式:橫坐標(biāo)、縱坐標(biāo)分別相等.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•普陀區(qū)二模)已知a>0且a≠1,函數(shù)f(x)=loga(x+1),g(x)=loga
11-x
,記F(x)=2f(x)+g(x)
(1)求函數(shù)F(x)的定義域D及其零點(diǎn);
(2)若關(guān)于x的方程F(x)-m=0在區(qū)間[0,1)內(nèi)有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•泉州模擬)已知函數(shù)f(x)的圖象是連續(xù)不斷的,x,f(x)的對應(yīng)值如下表:
x -2 -1 1 2 3
f(x) -3 -2 -1 1 2
在下列區(qū)間內(nèi),函數(shù)f(x)一定有零點(diǎn)的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•吉安縣模擬)已知函數(shù)f(x)=(1+
1x
)[1+ln(x+1)]
,設(shè)g(x)=x2•f'(x)(x>0)
(1)是否存在唯一實(shí)數(shù)a∈(m,m+1),使得g(a)=0,若存在,求正整數(shù)m的值;若不存在,說明理由.
(2)當(dāng)x>0時(shí),f(x)>n恒成立,求正整數(shù)n的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•北京)已知點(diǎn)A(1,-1),B(3,0),C(2,1).若平面區(qū)域D由所有滿足
AP
AB
AC
(1≤λ≤2,0≤μ≤1)的點(diǎn)P組成,則D的面積為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解:因?yàn)橛胸?fù)根,所以在y軸左側(cè)有交點(diǎn),因此

解:因?yàn)楹瘮?shù)沒有零點(diǎn),所以方程無根,則函數(shù)y=x+|x-c|與y=2沒有交點(diǎn),由圖可知c>2


 13.證明:(1)令x=y=1,由已知可得f(1)=f(1×1)=f(1)f(1),所以f(1)=1或f(1)=0

若f(1)=0,f(0)=f(1×0)=f(1)f(0)=0,所以f(1)=f(0)與已知條件“”矛盾所以f(1)≠0,因此f(1)=1,所以f(1)-1=0,1是函數(shù)y=f(x)-1的零點(diǎn)

(2)因?yàn)閒(1)=f[(-1)×(-1)]=f2(-1)=,所以f(-1)=±1,但若f(-1)=1,則f(-1)=f(1)與已知矛盾所以f(-1)不能等于1,只能等于-1。所以任x∈R,f(-x)=f(-1)f(x)=-f(x),因此函數(shù)是奇函數(shù)

數(shù)字1,2,3,4恰好排成一排,如果數(shù)字i(i=1,2,3,4)恰好出現(xiàn)在第i個(gè)位置上則稱有一個(gè)巧合,求巧合數(shù)的分布列。

查看答案和解析>>

同步練習(xí)冊答案