設(shè)分別為雙曲線的左、右焦點,為雙曲線的左頂點,以為直徑的圓交雙曲線某條漸過線兩點,且滿足,則該雙曲線的離心率為(    )
A.B.C.D.
A

試題分析:不妨設(shè)圓與相交且點的坐標(biāo)為,則點的坐標(biāo)為,聯(lián)立,,,又,所以由余弦定理得,化簡得,求得,故選A.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓,橢圓的長軸為短軸,且與有相同的離心率.
(1)求橢圓的方程;
(2)設(shè)O為坐標(biāo)原點,點A,B分別在橢圓上, ,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,其中左焦點(-2,0).
(1) 求橢圓C的方程;
(2) 若直線y=x+m與橢圓C交于不同的兩點A,B,且線段AB的中點M在圓x2+y2=1上,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

為橢圓上任意一點,、為左右焦點.如圖所示:

(1)若的中點為,求證;
(2)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知曲線上任意一點到直線的距離是它到點距離的倍;曲線是以原點為頂點,為焦點的拋物線.
(Ⅰ)求,的方程;
(Ⅱ)過作兩條互相垂直的直線,其中相交于點,相交于點,求四邊形面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,點B與點A(-1,1)關(guān)于原點O對稱,P是動點,且直線AP與BP的斜率之積等于.
(1)求動點P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點M,N,問:是否存在點P使得△PAB與△PMN的面積相等?若存在,求出點P的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一個圓的圓心為坐標(biāo)原點,半徑為.從這個圓上任意一點軸作垂線,為垂足.
(Ⅰ)求線段中點的軌跡方程;
(Ⅱ)已知直線的軌跡相交于兩點,求的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓E:,橢圓E的內(nèi)接平行四邊形的一組對邊分別經(jīng)過它的兩個焦點(如圖),則這個平行四邊形面積的最大值是   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知兩定點,如果動點滿足,則點的軌跡所包圍的圖形的面積等于(  )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案