(2012•茂名二模)已知復(fù)數(shù)z滿足(1+i)z=1-i,則復(fù)數(shù)z的共軛復(fù)數(shù)為
i
i
分析:利用復(fù)數(shù)的運(yùn)算法則化為2z=-2i,即可得到z=-i,再利用共軛復(fù)數(shù)的定義即可得出
.
z
解答:解:∵復(fù)數(shù)z滿足(1+i)z=1-i,∴(1-i)(1+i)z=(1-i)2,化為2z=-2i,∴z=-i.
∴復(fù)數(shù)z的共軛復(fù)數(shù)為i.
故答案為i.
點(diǎn)評(píng):熟練掌握復(fù)數(shù)的運(yùn)算法則、共軛復(fù)數(shù)的定義是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)(坐標(biāo)系與參數(shù)方程選做題)
已知曲線C的參數(shù)方程為
x=1+cosθ
y=sinθ
(θ為參數(shù)),則曲線C上的點(diǎn)到直線x+y+2=0的距離的最大值為
3
2
2
+1
3
2
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)已知函數(shù)f(x)=2
3
sin
x
3
cos
x
3
-2sin2
x
3

(1)求函數(shù)f(x)的值域;
(2)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若f(C)=1,且b2=ac,求sinA的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)已知全集U=R,則正確表示集合M={0,1,2}和N={x|x2+2x=0}關(guān)系的韋恩(Venn)圖是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)長(zhǎng)方體的一個(gè)頂點(diǎn)上的三條棱長(zhǎng)分別是3,4,x,且它的8個(gè)頂點(diǎn)都在同一球面上,這個(gè)球的表面積是125π,則x的值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•茂名二模)下列三個(gè)不等式中,恒成立的個(gè)數(shù)有( 。
①x+
1
x
≥2(x≠0);②
c
a
c
b
(a>b>c>0);③
a+m
b+m
a
b
(a,b,m>0,a<b).

查看答案和解析>>

同步練習(xí)冊(cè)答案