A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
分析 ①根據(jù)向量關(guān)系的性質(zhì)進(jìn)行判斷,
②單位向量的方向不一定相同,
③根據(jù)相等向量的定義進(jìn)行判斷,
④模長(zhǎng)為0的向量為零向量,
⑤當(dāng)$\overrightarrow b$=$\overrightarrow{0}$時(shí),結(jié)論不成立,
⑥由于sin$\frac{π}{7}$>0,sin$\frac{2π}{7}$>0,…sin$\frac{6π}{7}$>0,sin$\frac{7π}{7}$=0,sin$\frac{8π}{7}$<0,…sin$\frac{13π}{7}$<0,sin$\frac{14π}{7}$=0,可得到S1>0,…S13=0,而S14=0,從而可得到周期性的規(guī)律,從而得到答案.
解答 解:①向量$\overrightarrow{AB}$與$\overrightarrow{CD}$是共線向量,則$\overrightarrow{AB}$∥$\overrightarrow{CD}$,但A、B、C、D四點(diǎn)不一定在一直線上,故①錯(cuò)誤;
②兩個(gè)單位向量是相等向量錯(cuò)誤,長(zhǎng)度相等,但方向不一定相同,故②錯(cuò)誤;
③若$\overrightarrow a=\overrightarrow b,\overrightarrow b=\overrightarrow c$,則$\overrightarrow a=\overrightarrow c$;正確,故③正確,
④若一個(gè)向量的模為0,則該向量為零向量,零向量與任一向量平行,故④正確,
⑤若$\overrightarrow a$與$\overrightarrow b$共線,$\overrightarrow b$與$\overrightarrow c$共線,則$\overrightarrow a$與$\overrightarrow c$共線,錯(cuò)誤,當(dāng)$\overrightarrow b$=$\overrightarrow{0}$時(shí),結(jié)論不成立,故⑤錯(cuò)誤,
⑥∵sin$\frac{π}{7}$>0,sin$\frac{2π}{7}$>0,…sin$\frac{6π}{7}$>0,sin$\frac{7π}{7}$=0,sin$\frac{8π}{7}$<0,…sin$\frac{13π}{7}$<0,sin$\frac{14π}{7}$=0,
∴S1=sin$\frac{π}{7}$>0,
S2=sin$\frac{π}{7}$+sin$\frac{2π}{7}$>0,
…,
S8=sin$\frac{π}{7}$+sin$\frac{2π}{7}$+…sin$\frac{6π}{7}$+sin$\frac{7π}{7}$+sin$\frac{8π}{7}$=sin$\frac{2π}{7}$+…+sin$\frac{6π}{7}$+sin$\frac{7π}{7}$>0,
…,
S12>0,
而S13=sin$\frac{π}{7}$+sin$\frac{2π}{7}$+…+sin$\frac{6π}{7}$+sin$\frac{7π}{7}$+sin$\frac{8π}{7}$+sin$\frac{9π}{7}$+…+sin$\frac{13π}{7}$=0,
S14=S13+sin$\frac{14π}{7}$=0+0=0,
又S15=S14+sin$\frac{15π}{7}$=0+sin$\frac{π}{7}$=S1>0,S16=S2>0,…S27=S13=0,S28=S14=0,
∴S14n-1=0,S14n=0(n∈N*),在1,2,…100中,能被14整除的共7項(xiàng),
∴在S1,S2,…,S100中,為0的項(xiàng)共有14項(xiàng),其余項(xiàng)都為正數(shù).
故在S1,S2,…,S100中,正數(shù)的個(gè)數(shù)是86.故⑥錯(cuò)誤,
故正確的是③④,
故選:B
點(diǎn)評(píng) 本題主要考查命題的真假判斷,涉及向量的有關(guān)概念和性質(zhì),考查學(xué)生的運(yùn)算和推理能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{1}{5}$ | B. | $\frac{1}{5}$i | C. | $\frac{\sqrt{5}}{5}$ | D. | $\frac{\sqrt{5}}{5}$i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\int_1^2{f(x)dx=28}$ | B. | $\int_2^3{f(x)dx=28}$ | ||
C. | $\int_1^2{2f(x)dx=56}$ | D. | $\int_1^2{f(x)dx+}\int_2^3{f(x)dx=56}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com