函數(shù)的最小值為an,最大值為bn,且,數(shù)列{cn}的前n項(xiàng)和為Sn

(Ⅰ)求數(shù)列{cn}的通項(xiàng)公式;

(Ⅱ)若數(shù)列{dn}是等差數(shù)列,且,求非零常數(shù)c;

(Ⅲ)若,求數(shù)列{f(n)}的最大項(xiàng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x2-n
x2+2
(n∈N*)
,設(shè)f(x)的最小值為an,則
lim
n→∞
an2-n
n2+2
=
1
4
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=1-
2x+1-n
x2+x+1
(n∈N*)的最小值為an,最大值為bn,又Cn=3(an+bn)-9
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求
lim
n→∞
C1+C2+…+Cn
Cn
(n∈N*)的值
(3)設(shè)Sn=
1
C1
+
1
C2
+…+
1
Cn
,dn=S2n+1-Sn
,是否存在最小的整數(shù)m,使對(duì)任意的n∈N*都有dn
m
25
成立?若存在,求出m的值;若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年浙江省湖州市吳興區(qū)菱湖中學(xué)高三(上)期中數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

設(shè)函數(shù)的最小值為an,最大值為bn,記cn=(1-an)(1-bn),則數(shù)列{cn}為( )
A.是常數(shù)列
B.是公比不為1的等比數(shù)列
C.是公差不為0的等差數(shù)列
D.不是等差數(shù)列也不是等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2006-2007學(xué)年江蘇省南通市如東中學(xué)高三(下)3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

函數(shù)的最小值為an,最大值為bn,且,數(shù)列{Cn}的前n項(xiàng)和為Sn
(1)求數(shù)列{cn}的通項(xiàng)公式;
(2)若數(shù)列{dn}是等差數(shù)列,且,求非零常數(shù)c;
(3)若,求數(shù)列{f(n)}的最大項(xiàng).

查看答案和解析>>

同步練習(xí)冊(cè)答案