1.已知函數(shù)f(x)=lnx+2x+x-1,若f(x2-4)<2,則實(shí)數(shù)x的取值范圍是( 。
A.(-2,2)B.(2,$\sqrt{5}$)C.(-$\sqrt{5}$,-2)D.(-$\sqrt{5}$,-2)∪(2,$\sqrt{5}$)

分析 可判斷f(x)在定義域內(nèi)的單調(diào)性,且f(1)=2,由此可去掉不等式中的符號(hào)“f”,化為具體不等式,注意函數(shù)定義域.

解答 解:f(x)的定義域?yàn)椋?,+∞),
f′(x)=$\frac{1}{x}$+2xln2+1>0,
∴f(x)單調(diào)遞增,且f(1)=2,
∴f(x2-4)<2,即為f(x2-4)<f(1),
則0<x2-4<1,解得-$\sqrt{5}$<x<-2或2<x<$\sqrt{5}$,
∴實(shí)數(shù)x的取值范圍是(-$\sqrt{5}$,-2)∪(2,$\sqrt{5}$),
故選:D.

點(diǎn)評(píng) 本題考查函數(shù)的單調(diào)性及其應(yīng)用、抽象不等式的求解,考查轉(zhuǎn)化思想,考查學(xué)生靈活運(yùn)用知識(shí)分析解決問(wèn)題的能力,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.給出下列四種說(shuō)法:
(1)函數(shù)y=ax(a>0,a≠1)與函數(shù)y=x2的定義域相同;
(2)函數(shù)y=2x與函數(shù)y=log3x互為反函數(shù);
(3)函數(shù)y=log3(x2-2x-3)的單調(diào)增區(qū)間是[1,+∞);
(4)函數(shù)y=3|x|的值域?yàn)閇1,+∞).
其中所有正確的序號(hào)是(1),(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.過(guò)點(diǎn)A(5,2),且在坐標(biāo)軸上截距的絕對(duì)值相同的直線(xiàn)l的方程為( 。
A.x-y-3=0B.2x-5y=0
C.x-y-3=0或2x-5y=0D.x-y-3=0或2x-5y=0或x+y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.拋物線(xiàn)y2=2x上一點(diǎn)M到它的焦點(diǎn)F的距離為$\frac{5}{2}$,O為坐標(biāo)原點(diǎn),則△MFO的面積為( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{\sqrt{2}}{4}$C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.寫(xiě)出命題“若x2+x-2≤0,則|2x+1|<1”的逆命題、否命題、逆否命題,并分別判斷它們的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.下列函數(shù)中,在區(qū)間(-1,1)上為減函數(shù)的是( 。
A.y=ln(x+1)B.y=2-xC.y=$\frac{1}{1-x}$D.y=cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知{(x,y)|ax+y+b=0}∩{(x,y)|x+y+1=0}=∅,則a,b所滿(mǎn)足的條件是a=1且b≠1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.(1)已知a、b∈R+,且a+b=3,求ab2的最大值.
(2)設(shè)函數(shù)f(x)=|2x+1|-|x-2|,求不等式f(x)>2的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.下列函數(shù)中,既是奇函數(shù)且在(0,+∞)是增函數(shù)(  )
A.y=x3B.y=log2xC.y=x-3D.y=0.5x

查看答案和解析>>

同步練習(xí)冊(cè)答案