分析 (1)連接CE,DE,設DE∩AC=O,連接FO,推導出四邊形AECD為平行四邊形,從而OF∥PE,由此能證明PE∥平面ACF.
(2)取AD的中點G,連接PG,以C為坐標原點,分別以CD,CB所在直線為x軸,y軸,$\overrightarrow{GP}$為z軸正方向,建立空間直角坐標系C-xyz,利用向量法能求出二面角A-PB-C的正弦值.
解答 證明:(1)連接CE,DE,設DE∩AC=O,連接FO,
∵$AE=\frac{1}{2}BE,AB=3,CD=1,AB∥CD$,∴$AE\underline{\underline∥}CD$,
∴四邊形AECD為平行四邊形,且O是DE的中點,
又∵F為PD的中點,∴OF∥PE,
∵OF?平面ACF,PE?平面ACF,
∴PE∥平面ACF.
解:(2)取AD的中點G,連接PG,
由PA=PD,得PG⊥AD,
∵平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,PG⊥AD,
∴PG⊥平面ABCD,在Rt△CBE中,$CE=\sqrt{C{B^2}+E{B^2}}=\sqrt{{4^2}+{2^2}}=2\sqrt{5}$,
在等腰△PAD中,$AD=2\sqrt{5}$,∴$PG=\sqrt{P{A^2}-A{G^2}}=\sqrt{{3^2}-{{({\sqrt{5}})}^2}}=2$,
以C為坐標原點,分別以CD,CB所在直線為x軸,y軸,$\overrightarrow{GP}$為z軸正方向,
建立如圖所示的空間直角坐標系C-xyz,
由題知,$A({3,4,0}),B({0,4,0}),D({1,0,0}),P({2,2,2}),F(xiàn)({\frac{3}{2},1,1})$,
∴$\overrightarrow{CF}=({\frac{3}{2},1,1}),\overrightarrow{CB}=({0,4,0}),\overrightarrow{CA}=({3,4,0})$
設$\overrightarrow n=({{x_1},{y_1},{z_1}})$是平面CBF的法向量,
則$\left\{\begin{array}{l}\overrightarrow{CB}•\overrightarrow n=0\\ \overrightarrow{CF}•\overrightarrow n=0\end{array}\right.$,即$\left\{\begin{array}{l}4{y_1}=0\\ \frac{3}{2}{x_1}+{y_1}+{z_1}=0\end{array}\right.$,∴$\overrightarrow n=({2,0,-3})$.
設$\overrightarrow m=({{x_2},{y_2},{z_2}})$是平面CAF的法向量,
則$\left\{\begin{array}{l}\overrightarrow{CA}•\overrightarrow m=0\\ \overrightarrow{CF}•\overrightarrow m=0\end{array}\right.$,即$\left\{\begin{array}{l}3{x_2}+4{y_2}=0\\ \frac{3}{2}{x_2}+{y_2}+{z_2}=0\end{array}\right.$得$\overrightarrow m=({4,-3,-3})$.
∴$cos<\overrightarrow n,\overrightarrow m>=\frac{\overrightarrow n•\overrightarrow m}{{|{\overrightarrow n}|•|{\overrightarrow m}|}}=\sqrt{\frac{17}{26}}$,
設二面角A-CF-B的平面角為θ,
則sinθ=$\sqrt{1-(\sqrt{\frac{17}{26}})^{2}}$=$\frac{3\sqrt{26}}{26}$.
∴二面角A-PB-C的正弦值為$\frac{{3\sqrt{26}}}{26}$.
點評 本題考查線面平行的證明,考查二面角的正弦值的求法,是中檔題,解題時要認真審題,注意向量法的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1或3 | B. | 1 | C. | 3 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com