分析 (1)求出直線AB的方程,代入雙曲線方程,求出C的坐標,即可求弦AB的中點C到右焦點F2的距離;
(2)利用弦長公式求弦AB的長.
解答 解:(1)由已知,AB的方程為y=x-5,
將其代入$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1,得7x2+90x-369=0.設A(x1,y1),B(x2,y2),
則x1+x2=-$\frac{90}{7}$,∴$\frac{{x}_{1}+{x}_{2}}{2}$=-$\frac{45}{7}$,解得$\frac{{y}_{1}+{y}_{2}}{2}$=-$\frac{80}{7}$
AB的中點C的坐標為(-$\frac{45}{7}$,-$\frac{80}{7}$).
于是|CF|=$\sqrt{(-\frac{45}{7}-5)^{2}+(-\frac{80}{7}-0)^{2}}$=$\frac{80\sqrt{2}}{7}$;
(2)弦AB的長=$\sqrt{1+1}•\sqrt{(-\frac{90}{7})^{2}+4×\frac{369}{7}}$=$\frac{224}{7}$.
點評 本題考查雙曲線的方程與性質,考查直線與雙曲線的位置關系,考查學生的計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (9,6) | B. | (9,6)或(9,-6) | C. | (9,-6) | D. | (6,-6) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 8 | B. | -8 | C. | ±8 | D. | ±64 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com