已知拋物線的焦點(diǎn)為,點(diǎn)為拋物線上的一點(diǎn),其縱坐標(biāo)為,.

(1)求拋物線的方程;

(2)設(shè)為拋物線上不同于的兩點(diǎn),且,過(guò)兩點(diǎn)分別作拋物線的切線,記兩切線的交點(diǎn)為,求的最小值.

 

(1);(2).

【解析】

試題分析:(1)對(duì)于開口向上的拋物線來(lái)說(shuō),,代入坐標(biāo),解出;

(2)設(shè),利用導(dǎo)數(shù)的幾何意義,利用點(diǎn)斜式方程,分別設(shè)出過(guò)兩點(diǎn)的切線方程,然后求出交點(diǎn)的坐標(biāo),結(jié)合,所得到的關(guān)系式,設(shè),以及的坐標(biāo),將點(diǎn)的坐標(biāo)轉(zhuǎn)化為一個(gè)未知量表示的函數(shù),,用未知量表示,轉(zhuǎn)化為函數(shù)的最值問題,利用二次函數(shù)求最值的方法求出.中檔偏難題型.

試題解析:(1)由拋物線定義得: 2分

拋物線方程為 4分

(2)設(shè)

6分

處的切線的斜率為

處的切線方程為

8分

設(shè),由

10分

當(dāng)時(shí), 12分

考點(diǎn):1.拋物線的定義;2.導(dǎo)數(shù)的幾何意義;3.函數(shù)的最值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省邯鄲市高三第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

如下圖,在三棱錐中,底面,點(diǎn)為以為直徑的圓上任意一動(dòng)點(diǎn),且,點(diǎn)的中點(diǎn),且交于點(diǎn).

(1)求證:;

(2)當(dāng)時(shí),求二面角的余弦值.

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省邯鄲市高三第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

復(fù)數(shù)滿足,則( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省邯鄲市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知是橢圓,上除頂點(diǎn)外的一點(diǎn),是橢圓的左焦點(diǎn),若 則點(diǎn)到該橢圓左焦點(diǎn)的距離為( )

A. B. C . D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省邯鄲市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

已知集合,,,則為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省邯鄲市高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題

已知是定義在[-1,1]上的奇函數(shù)且,當(dāng),且時(shí),有,若對(duì)所有、恒成立,則實(shí)數(shù)的取值范圍是_________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省邯鄲市高三第一次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:選擇題

,且,則的值為( )

A. B. C. D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題

軸的正方向上,從左向右依次取點(diǎn)列 ,以及在第一象限內(nèi)的拋物線上從左向右依次取點(diǎn)列,使)都是等邊三角形,其中是坐標(biāo)原點(diǎn),則第2005個(gè)等邊三角形的邊長(zhǎng)是 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年河北省石家莊市畢業(yè)班第一次模擬考試數(shù)學(xué)理科數(shù)學(xué)試卷(解析版) 題型:解答題

在直角坐標(biāo)系中,曲線C1的參數(shù)方程為:為參數(shù)),以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸,并取與直角坐標(biāo)系相同的長(zhǎng)度單位,建立極坐標(biāo)系,曲線C2是極坐標(biāo)方程為:,

(1)求曲線C2的直角坐標(biāo)方程;

(2)若P,Q分別是曲線C1和C2上的任意一點(diǎn),求的最小值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案