17.已知函數(shù)f(x)=a(x+lnx)(a≠0),g(x)=x2
(1)若f(x)的圖象在x=1處的切線恰好也是g(x)圖象的切線.
①求實數(shù)a的值;
②若方程f(x)=mx在區(qū)間$[{\frac{1}{e},+∞})$內(nèi)有唯一實數(shù)解,求實數(shù)m的取值范圍.
(2)當(dāng)0<a<1時,求證:對于區(qū)間[1,2]上的任意兩個不相等的實數(shù)x1,x2,都有|f(x1)-f(x2)|<|g(x1)-g(x2)|成立.

分析 (1)①求導(dǎo)數(shù),利用f(x)的圖象在x=1處的切線恰好也是g(x)圖象的切線,求實數(shù)a的值;
②由x+lnx=mx,得m=1+$\frac{lnx}{x}$,設(shè)t(x)=1+$\frac{lnx}{x}$,x∈$[{\frac{1}{e},+∞})$,則問題等價于y=m與t(x)的圖象在$[{\frac{1}{e},+∞})$上有唯一交點,即可求實數(shù)m的取值范圍.
(2)設(shè)F(x)=f(x)-g(x),即F(x)=a(x+lnx)-x2,F(xiàn)(x)在[1,2]上單調(diào)遞減,F(xiàn)′(x)=$\frac{ax+a-2{x}^{2}}{2}$≤0恒成立,即a≤$\frac{2{x}^{2}}{x+1}$在[1,2]上恒成立,即可證明結(jié)論.

解答 (1)解:①f′(x)=a(1+$\frac{1}{x}$),∴x=1,f′(x)=2a,切點為(1,a),
∴切線方程為y-a=2a(x-1),即y=2ax-a,
聯(lián)立$\left\{\begin{array}{l}{y=2ax-a}\\{y={x}^{2}}\end{array}\right.$,消去y,可得x2-2ax+a=0,△=4a2-4a=0,∴a=1;
②由x+lnx=mx,得m=1+$\frac{lnx}{x}$,
設(shè)t(x)=1+$\frac{lnx}{x}$,x∈$[{\frac{1}{e},+∞})$,則問題等價于y=m與t(x)的圖象在$[{\frac{1}{e},+∞})$上有唯一交點,
∵t′(x)=$\frac{1-lnx}{{x}^{2}}$,∴($\frac{1}{e}$,e),t′(x)>0,函數(shù)單調(diào)遞增,(e,+∞),t′(x)<0,函數(shù)單調(diào)遞減,
∵t($\frac{1}{e}$)=1-e,t(e)=1+$\frac{1}{e}$,且x∈(e,+∞)時,t(x)>1,
∴m∈[1-e]∪{1+$\frac{1}{e}$};
證明:(2)不妨設(shè)1≤x1<x2≤2,則f(x1)<f(x2),g(x1)<g(x2),
∴|f(x1)-f(x2)|<|g(x1)-g(x2)|可化為f(x2)-f(x1)<g(x2)-g(x1
∴f(x2)-g(x2)<f(x1)-g(x1
設(shè)F(x)=f(x)-g(x),即F(x)=a(x+lnx)-x2,∴F(x)在[1,2]上單調(diào)遞減,
∴F′(x)=$\frac{ax+a-2{x}^{2}}{2}$≤0恒成立,即a≤$\frac{2{x}^{2}}{x+1}$在[1,2]上恒成立,
∵$\frac{2{x}^{2}}{x+1}$=$\frac{2}{(\frac{1}{x}+\frac{1}{2})^{2}-\frac{1}{4}}$≥1,∴a≤1,
從而,當(dāng)0<a<1時,命題成立.

點評 本題考查導(dǎo)數(shù)知識的運用,考查多歲的幾何意義,考查恒成立問題,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.函數(shù)f(x)=2sin(ωx+φ)(ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$)的部分圖象如圖所示,將f(x)的圖象向左平移$\frac{π}{6}$個單位后的解析式為( 。
A.y=2sin(2x-$\frac{π}{6}$)B.y=2sin(2x+$\frac{π}{6}$)C.y=2sin(2x)D.y=2sin(2x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.某射擊運動員射擊擊中目標(biāo)的概率為97%,估計該運動員射擊1000次命中的次數(shù)為970.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知某高中共有2400人,其中高一年級600人,現(xiàn)對該高中全體學(xué)生利用分層抽樣的方法進行一項調(diào)查,需要從高一年級抽取20人,則全校應(yīng)一共抽取80人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)$f(x)=\left\{\begin{array}{l}{2^x}-x,x>1\\ 1,x≤1\end{array}\right.$,則不等式$f(x)<f({\frac{2}{x}})$的解集是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.設(shè)P(n,m)=${{\sum_{k=0}^{n}(-1)}^{k}C}_{n}^{k}\frac{m}{m+k}$,Q(n,m)=${C}_{n+m}^{m}$,其中m,n∈N*
(1)當(dāng)m=1時,求P(n,1),Q(n,1)的值;
(2)對?m∈N*,證明:P(n,m)•Q(n,m)恒為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=sin(πx+$\frac{π}{4}$)和函數(shù)g(x)=cos(πx+$\frac{π}{4}$)在區(qū)間[-$\frac{5}{4}$,$\frac{7}{4}$]上的圖象交于A,B,C三點,則△ABC的面積是( 。
A.$\frac{\sqrt{2}}{2}$B.$\frac{3\sqrt{2}}{4}$C.$\sqrt{2}$D.$\frac{5\sqrt{2}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知α是第二象限角,$cos(\frac{π}{2}-α)=\frac{4}{5}$,則tanα=-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.設(shè)F1、F2分別是橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左、右焦點,P是橢圓C上的點,且$\overrightarrow{P{F}_{2}}$•$\overrightarrow{{F}_{1}{F}_{2}}$=0,坐標(biāo)原點O到直線PF1的距離是$\frac{1}{3}|{O{F_2}}|$.
(Ⅰ)求橢圓C的離心率;
(Ⅱ)過橢圓C的上頂點B作斜率為k(k>0)的直線l交橢圓C于另一點M,點N在橢圓C上,且BM⊥BN,求證:存在$k∈[{\frac{1}{4},\frac{1}{2}}]$,使得|BN|=2|BM|.

查看答案和解析>>

同步練習(xí)冊答案