下列對(duì)應(yīng)是集合A到集合B的映射的是(  )
A、A=N+,B=N+,f:x→|x-3|
B、A={平面內(nèi)的圓},B={平面內(nèi)的矩形},f:每一個(gè)圓對(duì)應(yīng)它的內(nèi)接矩形
C、A={0≤x≤2},B={y|0≤y≤6},f:x→y=
1
2
x
D、A={0,1},B={-1,0,1},f:A中的數(shù)開平方
考點(diǎn):映射
專題:操作型,函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)映射的定義,只要把集合A中的每一個(gè)元素在集合B中找到一個(gè)元素和它對(duì)應(yīng)即可;據(jù)此分析選項(xiàng)可得答案.
解答: 解:根據(jù)映射的定義,只要把集合A中的每一個(gè)元素在集合B中找到一個(gè)元素和它對(duì)應(yīng),可得C滿足題意.
故選:C.
點(diǎn)評(píng):此題是個(gè)基礎(chǔ)題.考查映射的概念,同時(shí)考查學(xué)生對(duì)基本概念理解程度和靈活應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

一個(gè)四棱錐的三視圖如圖所示,其側(cè)視圖是等邊三角形,該四棱錐的體積等于( 。
A、
3
B、2
3
C、3
3
D、6
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={y|y=ln(x2+1),x∈R},集合A={x||x-2|≤1},則如圖所示的陰影部分表示的集合為( 。
A、{x|0≤x<1或x>3}
B、{x|0≤x<1}
C、{x|x>3}
D、{x|1≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A{1,2},B={1,2},則可以確定不同映射f:A→B的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a+c=6,b=2,cosB=
7
9

(1)求a,c的值;
(2)求sin(A+B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲乙兩人下棋,甲勝乙的概率為0.4,甲不輸?shù)母怕蕿?.9,則甲、乙和棋的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-6x-7<0},B={x|x2+2x-8≥0},則A∪∁RB=( 。
A、{x|-1<x<7}
B、{x|x>2或x<-4
C、{x|-1<x<2}
D、{x|-4<x<7}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
m
=(sinωx,cosωx),
n
=(cosωx,cosωx),其中ω>0,函數(shù)f(x)=2
m
n
-1的最小正周期為π.
(Ⅰ) 求ω的值;
(Ⅱ) 求函數(shù)f(x)在[
π
6
,
π
4
]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x+3
+
(2x+3)0
3-2x
的定義域是(  )
A、[-3,
3
2
]
B、[-3,-
3
2
)∪(-
3
2
,
3
2
C、[-3,
3
2
D、[-3,-
3
2
)∪(-
3
2
,
3
2
]

查看答案和解析>>

同步練習(xí)冊(cè)答案