設(shè)函數(shù)f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f'(x)是奇函數(shù).
(Ⅰ)求b,c的值.
(Ⅱ)求g(x)的單調(diào)區(qū)間與極值.
【答案】
分析:(1)根據(jù)g(x)=f(x)-f'(x)是奇函數(shù),且f'(x)=3x
2+2bx+c能夠求出b與c的值.
(2)對g(x)進行求導(dǎo),g'(x)>0時的x的取值區(qū)間為單調(diào)遞增區(qū)間,g'(x)<0時的x的取值區(qū)間為單調(diào)遞減區(qū)間.g'(x)=0時的x函數(shù)g(x)取到極值.
解答:解:(Ⅰ)∵f(x)=x
3+bx
2+cx,∴f'(x)=3x
2+2bx+c.
從而g(x)=f(x)-f'(x)=x
3+bx
2+cx-(3x
2+2bx+c)=x
3+(b-3)x
2+(c-2b)x-c
是一個奇函數(shù),所以g(0)=0得c=0,由奇函數(shù)定義得b=3;
(Ⅱ)由(Ⅰ)知g(x)=x
3-6x,從而g'(x)=3x
2-6,
當(dāng)g'(x)>0時,x<-
或x>
,
當(dāng)g'(x)<0時,-
<x<
,
由此可知,
的單調(diào)遞增區(qū)間;
的單調(diào)遞減區(qū)間;
g(x)在x=
時取得極大值,極大值為
,g(x)在x=
時取得極小值,極小值為
.
點評:本題主要考查對導(dǎo)數(shù)的理解.導(dǎo)數(shù)大于0時可求原函數(shù)的單調(diào)遞增區(qū)間,導(dǎo)數(shù)小于0時可求原函數(shù)的單調(diào)遞減區(qū)間,取到極值時導(dǎo)數(shù)為0.