8.在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,若A=120°,a=7,b+c=8,求b,c.

分析 利用余弦定理和已知的條件求得bc的值,進(jìn)而根據(jù)b+c的值判斷出b,c是方程x2-8x+15=0的兩根,解方程求得b.

解答 解:在△ABC中,∵A=120°,a=7,b+c=8,
由余弦定理可知a2=b2+c2-2bccosA,可得:49=b2+c2+bc=(b+c)2-bc=64-bc,
∴bc=15,
∵b+c=8,
∴b,c是方程x2-8x+15=0的兩根,
∴b=3,c=5或b=5,c=3.

點(diǎn)評(píng) 本題主要考查了解三角形的問(wèn)題,考查了正弦定理和余弦定理的應(yīng)用和方程思想的靈活運(yùn)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.已知不等式x2+px+1>2x+p,當(dāng)|p|≤2時(shí)恒成立,則實(shí)數(shù)x的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知$\overrightarrow{a}$=(cosα,sinα),$\overrightarrow$=(cosβ,sinβ),$\overrightarrow{a}$與$\overrightarrow$之間有關(guān)系|k$\overrightarrow{a}$+$\overrightarrow$|=$\sqrt{3}$|$\overrightarrow{a}$-k$\overrightarrow$|,其中k>0.
(1)用k表示$\overrightarrow{a}$•$\overrightarrow$;
(2)求$\overrightarrow{a}$•$\overrightarrow$的最小值,并求此時(shí)$\overrightarrow{a}$•$\overrightarrow$的夾角的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.2016年里約奧運(yùn)會(huì)在巴西里約舉行,為了接待來(lái)自國(guó)內(nèi)外的各界人士,需招募一批志愿者,要求志愿者不僅要有一定的氣質(zhì),還需有豐富的人文、地理、歷史等文化知識(shí).志愿者的選拔分面試和知識(shí)問(wèn)答兩場(chǎng),先是面試,面試通過(guò)后每人積60分,然后進(jìn)入知識(shí)問(wèn)答.知識(shí)問(wèn)答有A,B,C,D四個(gè)題目,答題者必須按A,B,C,D順序依次進(jìn)行,答對(duì)A,B,C,D四題分別得20分、20分、40分、60分,每答錯(cuò)一道題扣20分,總得分在面試60分的基礎(chǔ)上加或減.答題時(shí)每人總分達(dá)到100分或100分以上,直接錄用不再繼續(xù)答題;當(dāng)四道題答完總分不足100分時(shí)不予錄用. 假設(shè)志愿者甲面試已通過(guò)且第二輪對(duì)A,B,C,D四個(gè)題回答正確的概率依次是$\frac{1}{2}$,$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$,且各題回答正確與否相互之間沒(méi)有影響.
(Ⅰ) 用X表示志愿者甲在知識(shí)問(wèn)答結(jié)束時(shí)答題的個(gè)數(shù),求X的分布列和數(shù)學(xué)期 望;
(Ⅱ)求志愿者甲能被錄用的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知“?x∈R,ax2+2ax+1≥0”為真命題,試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.班主任為了對(duì)本班學(xué)生的考試成績(jī)進(jìn)行分析,決定從全班36名女同學(xué),24名男同學(xué)中隨機(jī)抽取一個(gè)容量為5的樣本進(jìn)行分析.
(1)如果按性別比例分層抽樣,可以得到多少個(gè)不同的樣本?(只要求寫(xiě)出計(jì)算式即可)
(2)隨機(jī)抽取5位,他們的數(shù)學(xué)分?jǐn)?shù)從小到大排序是:89,91,93,95,97,物理分?jǐn)?shù)從小到大排序是:87,89,89,92,93
①若規(guī)定90分以上為優(yōu)秀,求這5位同學(xué)中恰有2位同學(xué)的數(shù)學(xué)和物理分?jǐn)?shù)均為優(yōu)秀的概率;②若這5位同學(xué)的數(shù)學(xué)、物理分?jǐn)?shù)事實(shí)上對(duì)應(yīng)如表:
學(xué)生編號(hào)12345
數(shù)學(xué)分?jǐn)?shù)x8991939597
物理分?jǐn)?shù)y8789899293
根據(jù)上表數(shù)據(jù),用變量y與x的相關(guān)系數(shù)或散點(diǎn)圖說(shuō)明物理成績(jī)y與數(shù)學(xué)成績(jī)x之間線(xiàn)性相關(guān)關(guān)系的強(qiáng)弱.如果具有較強(qiáng)的線(xiàn)性相關(guān)關(guān)系,求y與x的線(xiàn)性回歸方程(系數(shù)精確到0.01);如果不具有線(xiàn)性相關(guān)性,請(qǐng)說(shuō)明理由.
參考公式:相關(guān)系數(shù)r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$;回歸直線(xiàn)的方程是:$\stackrel{∧}{y}$=bx+a,其中對(duì)應(yīng)的回歸估計(jì)值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\stackrel{∧}{{y}_{i}}$是與xi對(duì)應(yīng)的回歸估計(jì)值.
參考值:$\sqrt{15}$≈3.9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.如圖是由圓柱與圓錐組合而成的幾何體的三視圖,則該幾何體的表面積為28π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.設(shè)函數(shù)f(x)=ex-ax,x∈R.
(1)當(dāng)a=2時(shí),求曲線(xiàn)f(x)在點(diǎn)(0,f(0))處的切線(xiàn)方程;
(2)在(1)的條件下,求證:f(x)>0;
(3)求證:lnx<x;
(4)a>1時(shí),求函數(shù)f(x)在[0,a]上的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)$f(x)=lnx-\frac{a(x-1)}{x}(a∈R)$.
(Ⅰ)若a=1,求y=f(x)在點(diǎn)(1,f(1))處的切線(xiàn)方程;
(Ⅱ)求f(x)的單調(diào)區(qū)間;
(Ⅲ)求證:不等式$\frac{1}{lnx}-\frac{1}{x-1}<\frac{1}{2}$對(duì)一切的x∈(1,2)恒成立.

查看答案和解析>>

同步練習(xí)冊(cè)答案