已知橢圓C:數(shù)學(xué)公式(a>b>0)的離心率為數(shù)學(xué)公式,以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線x-y+數(shù)學(xué)公式=0相切.
(1)求橢圓C的方程;
(2)若過點(diǎn)M(2,0)的直線與橢圓C相交于兩點(diǎn)A,B,設(shè)P為橢圓上一點(diǎn),且滿足數(shù)學(xué)公式(O為坐標(biāo)原點(diǎn)),求實(shí)數(shù)t的取值范圍.

解:(1)∵以原點(diǎn)為圓心,橢圓的短半軸長為半徑的圓與直線x-y+=0相切
,∴b=1
∵橢圓C:(a>b>0)的離心率為,

∴a2=2
∴橢圓C的方程為:…(4分)
(2)由題意知直線AB的斜率存在.
設(shè)AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),
代入橢圓方程,消元可得(1+2k2)x2-8k2x+8k2-2=0.
∴△=64k4-4(2k2+1)(8k2-2)>0,∴

∴x==,y=(8分)
∵點(diǎn)P在橢圓上,∴,
∴16k2=t2(1+2k2)…(10分)
,
,∴t2∈(0,4)
∴t∈(-2,0)∪(0,2)…(12分)
分析:(1)利用直線與圓相切的充要條件列出方程求出b的值,利用橢圓的離心率公式得到a,c的關(guān)系,再利用橢圓本身三個(gè)參數(shù)的關(guān)系求出a,c的值,將a,b的值代入橢圓的方程即可;
(2)設(shè)AB的方程代入橢圓方程,消元可得(1+2k2)x2-8k2x+8k2-2=0,利用確定A,B,P三點(diǎn)之間的關(guān)系,利用點(diǎn)P在橢圓上,建立方程,從而可求實(shí)數(shù)t的取值范圍.
點(diǎn)評:本題重點(diǎn)考查圓錐曲線的方程,考查直線與圓錐曲線的位置關(guān)系,解題的關(guān)鍵是利用待定系數(shù)法求圓錐曲線的方程.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年福建省龍巖市高三(上)期末質(zhì)量檢查一級達(dá)標(biāo)數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

已知橢圓C: (a>b>0)的左、右焦點(diǎn)分別為F1(-1,0)、F2(1,0),離心率為
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知一直線l過橢圓C的右焦點(diǎn)F2,交橢圓于點(diǎn)A、B.
(。┤魸M足(O為坐標(biāo)原點(diǎn)),求△AOB的面積;
(ⅱ)當(dāng)直線l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在一點(diǎn)P,使得直線PA、PB的傾斜角互為補(bǔ)角?若存在,求出P坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(四川卷解析版) 題型:解答題

(13分)已知橢圓C:(a>b>0)的兩個(gè)焦點(diǎn)分別為F1(﹣1,0),F(xiàn)2(1,0),且橢圓C經(jīng)過點(diǎn)

(I)求橢圓C的離心率:

(II)設(shè)過點(diǎn)A(0,2)的直線l與橢圓C交于M,N兩點(diǎn),點(diǎn)Q是線段MN上的點(diǎn),且,求點(diǎn)Q的軌跡方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆甘肅武威六中高二12月學(xué)段檢測文科數(shù)學(xué)試題(解析版) 題型:解答題

(12分)已知橢圓C:(a>b>0)的一個(gè)頂點(diǎn)為A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M、N.

 ①求橢圓C的方程.

 ②當(dāng)⊿AMN的面積為時(shí),求k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第七次月考理科數(shù)學(xué) 題型:解答題

已知橢圓C:+=1(a>b>0),直線y=x+與以原點(diǎn)為圓心,以橢圓C的短半軸長為半徑的圓相切,F(xiàn)1,F(xiàn)2為其左、右焦點(diǎn),P為橢圓C上任一點(diǎn),△F1PF2的重心為G,內(nèi)心為I,且IG∥F1F2。⑴求橢圓C的方程。⑵若直線L:y=kx+m(k≠0)與橢圓C交于不同兩點(diǎn)A,B且線段AB的垂直平分線過定點(diǎn)C(,0)求實(shí)數(shù)k的取值范圍。

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省高三上學(xué)期第三次月考數(shù)學(xué)文卷 題型:選擇題

已知橢圓C:(a>b>0)的離心率為,過右焦點(diǎn)F且斜率為kk>0)的直線與橢圓C相交于A、B兩點(diǎn),若。則 (    ) 

(A)1     (B)2      (C)      (D)

 

查看答案和解析>>

同步練習(xí)冊答案