焦點在y軸上,漸近線方程為y=±2x的雙曲線的離心率為
 
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:設雙曲線方程為
y2
a2
-
x2
b2
=1
(a>0,b>0),根據(jù)漸近線方程為y=±2x,可得
a
b
=2,即可求出雙曲線的離心率.
解答: 解:設雙曲線方程為
y2
a2
-
x2
b2
=1
(a>0,b>0),則
∵漸近線方程為y=±2x,
a
b
=2,
∴a=2b,
∴c=
a2+b2
=
5
b,
∴e=
c
a
=
5
2

故答案為:
5
2
點評:本題考查雙曲線的離心率,考查學生的計算能力,確定
a
b
=2是關鍵,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x+
1
x
,(x>0),以點(n,f(n))為切點作函數(shù)圖象的切線ln(n≥1,n∈Z),直線x=n+1與函數(shù)y=f(x)圖象及切線ln分別相交于An,Bn,記an=|AnBn|.
(Ⅰ)求切線ln的方程及數(shù)列{an}的通項;
(Ⅱ)設數(shù)列{nan}的前n項和為Sn,求證:Sn<1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知極坐標系的極點與直角坐標系的原點O重合,極軸與直角坐標系的非負半軸重合,直線l的參數(shù)方程為
x=t
y=2+2t
(參數(shù)t∈R),曲線C的極坐標方程為ρcos2θ=2sinθ.
(Ⅰ)求直線l的普通方程與曲線C的直角坐標方程;
(Ⅱ)設直線l與曲線C相交于A、B兩點,求證:
OA
OB
=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲、乙兩位同學參加2014年的自主招生考試,下火車后兩人共同提起一個行李包(如圖所示).設他們所用的力分別為
F1
,
F2
,行李包所受重力為
G
,若|
F1
|=|
F2
|=
2
2
|
G
|,則
F1
F2
的夾角θ的大小為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設[x]表示不超過x的最大整數(shù),如:[π]=3,[-4.3]=-5.給出下列命題:
①對任意實數(shù)x,都有[x]-x≤0;
②若x1≤x2,則[x1]≤[x2];
③[lg1]+[lg2]+[lg3]+…+[lg100]=90;
④若函數(shù)f(x)=
2x
1+2x
-
1
2
,則y=[f(x)]+[f(-x)]的值域為{-1,0}.
其中所有真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)g(x)=2(x2+ax)sin
πx
2
(x∈[0,2],a≥-2)的值域為[-2,0],則實數(shù)a的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知f(x)是定義在R上的偶函數(shù),對任意x∈R,都有f(x+4)=f(x)+2f(2),且f(-1)=2,則f(2013)等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面向量
a
=(1,1),
b
=(-1,m),若
a
b
,則m等于
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知tanα=3,則
3cosα+sinα
2cosα+sin(α+π)
=
 

查看答案和解析>>

同步練習冊答案