20.已知數(shù)列{an}的前 n項和記為 Sn,滿足${a_1}=5,{a_7}=\frac{8}{3}$,且2an+1=an+an+2,要使得Sn取到最大值,則n=( 。
A.13B.14C.15或16D.16

分析 數(shù)列{an}滿足2an+1=an+an+2,∴數(shù)列{an}是等差數(shù)列.設(shè)公差為d,則5+6d=$\frac{8}{3}$,解得d.令an≥0,解得n即可得出.

解答 解:∵數(shù)列{an}滿足2an+1=an+an+2,∴數(shù)列{an}是等差數(shù)列.
設(shè)公差為d,則5+6d=$\frac{8}{3}$,解得d=-$\frac{7}{18}$.
∴an=5-$\frac{7}{18}$(n-1)=$\frac{97-7n}{18}$.
令an≥0,解得n≤13.
∴要使得Sn取到最大值,則n=13.
故選:A.

點評 本題考查了等差數(shù)列的通項公式與求和公式、方程與不等式的解法、數(shù)列的單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

10.拋物線x2=4y的焦點為F,過F作斜率為$\frac{{\sqrt{3}}}{3}$的直線l與拋物線在y軸右側(cè)的部分相交于點A,過A作拋物線準線的垂線,垂足為H,則△AHF的面積是( 。
A.4B.$3\sqrt{3}$C.$4\sqrt{3}$D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.如圖,已知雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1(a>0,b>0)的右頂點為A,O為坐標原點,以A為圓心的圓與雙曲線C的某漸近線交于兩點P,Q,若∠PAQ=$\frac{π}{3}$,且$|{\overrightarrow{OQ}}|=3|{\overrightarrow{OP}}$|,則雙曲線C的離心率為( 。
A.$\frac{{\sqrt{3}}}{4}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{7}}}{4}$D.$\frac{{\sqrt{7}}}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.設(shè)函數(shù)f(x)=(x2-2x)lnx+(a-$\frac{1}{2}$)x2+2(1-a)x+a.
(Ⅰ)討論f(x)的單調(diào)性;
(Ⅱ)證明:當a≥0時,f(x)>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.若$({\frac{π}{8},0})$是函數(shù)f(x)=sinωx+cosωx圖象的一個對稱中心,則ω的取值可以是( 。
A.2B.4C.6D.8

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.在如圖所示的矩形中隨機投擲30000個點,則落在曲線C下方(曲線C為正態(tài)分布N(1,1)的正態(tài)曲線)的點的個數(shù)的估計值為( 。
附:正態(tài)變量在區(qū)間(μ-σ,μ+σ),(μ-2σ,μ+2σ),(μ-3σ,μ+3σ)內(nèi)取值的概率分別是0.683,0.954,0.997.
A.4985B.8185C.9970D.24555

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,在三棱柱ABC-A1B1C1中,側(cè)面AA1B1B⊥底面ABC,△ABC和△ABB1都是邊長為2的正三角形.
(Ⅰ)過B1作出三棱柱的截面,使截面垂直于AB,并證明;
(Ⅱ)求AC1與平面BCC1B1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,已知△ABC中,D為BC上一點,∠DAC=$\frac{π}{4}$,cos∠BDA=-$\frac{3}{5}$,AC=4$\sqrt{2}$.
( I)求AD的長;
( II)若△ABD的面積為14,求AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.若A為第二象限的角,sinA=$\frac{3}{5}$,那么tan2A=$-\frac{24}{7}$.

查看答案和解析>>

同步練習冊答案