不等式
x2-3x-4
x-2
<0的解集.
考點(diǎn):其他不等式的解法
專題:不等式的解法及應(yīng)用
分析:將原不等式轉(zhuǎn)化為
x2-3x-4>0
x-2<0
x2-3x-4<0
x-2>0
,分別解之,最后取并集即可.
解答: 解:原不等式等價(jià)于
x2-3x-4>0
x-2<0
x2-3x-4<0
x-2>0
…2分
解得:
x>4或x<-1
x<2
-1<x<4
x>2
…4分
∴x∈(-∞,-1)∪(2,4)…6分
點(diǎn)評:本題考查高次不等式的解法,等價(jià)轉(zhuǎn)化為相應(yīng)的不等式組是關(guān)鍵,考查運(yùn)算求解能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

滿足線性約束條件
x≥0
x≥y
2x-y≤1
的目標(biāo)函數(shù)z=x-2y的最小值為( 。
A、0B、-1C、2D、-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用等值法求247,152的最大公約數(shù)是(  )
A、17B、19C、29D、37

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于的方程x2-(m-1)x+2-m=0的兩根為正實(shí)數(shù),則( 。
A、m≤-1-2
2
或m≥-1+2
2
B、1<m<2
C、m≥2
2
-1
D、-1+2
2
≤m<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)命題p:函數(shù)f(x)=ax2-ax+1的圖象與x軸有兩個(gè)不同的交點(diǎn),命題q:?x∈[1,2],4x2+ax-2≥0恒成立.若p且q是真命題,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
x
2x+1
,數(shù)列{an}的首項(xiàng)a1=1,an+1=f(an)(n∈N*).
(I)證明數(shù)列{
1
an
}是等差數(shù)列;
(Ⅱ)設(shè)bn=an•an+1,求數(shù)列{bn}的前10項(xiàng)和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
,
e2
是二個(gè)不共線向量,知
AB
=2
e1
-8
e2
,
CB
=
e1
+3
e2
,
CD
=2
e1
-
e2

(1)證明:A、B、D三點(diǎn)共線
(2)若
BF
=3
e1
-k
e2
,且B、D、F三點(diǎn)共線,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知空間中不共面的四個(gè)點(diǎn)A、B、C、D,每2個(gè)點(diǎn)之間均可連一條線段.
(Ⅰ)任意取出三條線段中.求A、B、C、D四個(gè)點(diǎn)均在這三條線段的端點(diǎn)中的概率.
(Ⅱ)任意取出三條線段中,設(shè)含有點(diǎn)A的線段的條數(shù)為隨機(jī)變量X,求X的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)交通執(zhí)法部門從某日上午9時(shí)開始對經(jīng)過當(dāng)?shù)氐?00輛超速車輛的速度進(jìn)行測量并分組,并根據(jù)測得的數(shù)據(jù)制作了頻率分布表如下,若以頻率作為事件發(fā)生的概率.
組號超速分組頻數(shù)頻率
頻率
組距
1[0.20%)1760.88z
2[20%,40%)120.060.30
3[40%,60%)6y0.15
4[60%,80%)40.020.10
5[805,100%]x0.010.05
(Ⅰ)求x,y,z的值,并估計(jì)該地區(qū)的超速車輛中超速不低于20%的頻率;
(Ⅱ)若在第3,4,5組用分層抽樣的方法隨機(jī)抽取6名司機(jī)做回訪調(diào)查,并在這6名司機(jī)中任意選2人進(jìn)行采訪,求這2人中恰有1人超速在[80%,100%]之間的概率.

查看答案和解析>>

同步練習(xí)冊答案