【題目】已知數(shù)列的前項和滿足.
(1)證明數(shù)列為等差數(shù)列,并求出數(shù)列的通項公式.
(2)若不等式,對任意恒成立,求的取值范圍.
(3)記數(shù)列的前項和為,是否存在正整數(shù),使得成立,若存在,求出所有符合條件的有序?qū)崝?shù)對(,);若不存在,請說明理由.
【答案】(1)證明見解析,;(2) ;(3) 存在, (1,1),(1,2).
【解析】
(1)由與關系,得出的遞推關系,再用等差數(shù)列的定義,證明為等差數(shù)列,求出其通項,即可求得的通項公式;
(2)不等式,對任意恒成立,分離參數(shù)轉(zhuǎn)為對任意恒成立,轉(zhuǎn)為求數(shù)列的最大值,即可求出結(jié)果;
(3)求出通項公式,以及前項和為,代入化簡,轉(zhuǎn)化為關于的不等式,結(jié)合為正整數(shù),可求出的值.
(1)當=1時,,得,
當時,,,
兩式相減得:,
∴,即,
又,
∴數(shù)列是以2為首項,1為公差的等差數(shù)列.
(2)由(1)知,即
∵
∴不等式,對任意恒成立,
等價于對任意恒成立,
記
法一:則時,
∴時,;時,.
或(法二):時,
∴當時,,
∴或時,取最大值為,
∴,即
∴入的取值范圍是:.
(3)由得
∴數(shù)列的前項和為,
則
∵,得
∴
∴
∵是正整數(shù),∴
當時,即
解得,.
綜上存在所有符合條件的有序?qū)崝?shù)對(,)為:(1,1),(1,2).
科目:高中數(shù)學 來源: 題型:
【題目】給定無窮數(shù)列,若無窮數(shù)列滿足:對任意,都有,則稱與“接近”.
(1)設是首項為,公比為的等比數(shù)列,,,判斷數(shù)列是否與接近,并說明理由;
(2)已知是公差為的等差數(shù)列,若存在數(shù)列滿足:與接近,且在這100個值中,至少有一半是正數(shù),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱錐P﹣ABC中,和都為等腰直角三角形,,,M為AC的中點,且.
(1)求二面角P﹣AB﹣C的大小;
(2)求直線PM與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列,滿足:對于任意正整數(shù)n,當n≥2時,.
(1)若,求的值;
(2)若,,且數(shù)列的各項均為正數(shù).
① 求數(shù)列的通項公式;
② 是否存在,且,使得為數(shù)列中的項?若存在,求出所有滿足條件的的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某地對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,分別記錄了3月1日到3月5日的每天晝夜溫差與實驗室每天每100顆種子中的發(fā)芽數(shù),得到如下資料:
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 25 | 30 | 26 | 16 |
他們所確定的研究方案是:先從這五組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對選取的2組數(shù)據(jù)進行檢驗.
(1)求選取的2組數(shù)據(jù)恰好是相鄰2天數(shù)據(jù)的概率;
(2)若選取的是3月1日與3月5日的兩組數(shù)據(jù),請根據(jù)3月2日至3月4日的數(shù)據(jù),求出y關于x的線性回歸方程;并預報當溫差為時的種子發(fā)芽數(shù).
參考公式:,其中
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】以平面直角坐標系的坐標原點為極點,軸正半軸為極軸建立極坐標系.已知橢圓的參數(shù)方程為(為參數(shù)),直線的極坐標方程與橢相交于兩點.
(1)寫出直線的普通方程與參數(shù)方程:
(2)將橢圓的參數(shù)方程轉(zhuǎn)化為普通方程,并求弦長的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3+ax2﹣9x+1(a∈R),當x≠1時,曲線y=f(x)在點(x0,f(x0)和點(2﹣x0,f(2﹣x0))處的切線總是平行,現(xiàn)過點(﹣2a,a﹣2)作曲線y=f(x)的切線,則可作切線的條數(shù)為( )
A..3B..2C.1D..0
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校為提高課堂教學效果,最近立項了市級課題《高效課堂教學模式及其運用》,其中王老師是該課題的主研人之一,為獲得第一手數(shù)據(jù),她分別在甲、乙兩個平行班采用“傳統(tǒng)教學”和“高效課堂”兩種不同的教學模式進行教學實驗.為了解教改實效,期中考試后,分別從兩個班級中各隨機抽取20名學生的成績進行統(tǒng)計,作出如圖所示的莖葉圖,成績大于70分為“成績優(yōu)良”.
(1)由以上統(tǒng)計數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯誤的概率不超過的前提下認為“成績優(yōu)良與教學方式有關”?
甲班 | 乙班 | 總計 | |
成績優(yōu)良 | |||
成績不優(yōu)良 | |||
總計 |
(2)從甲、乙兩班40個樣本中,成績在60分以下(不含60分)的學生中任意選取2人,記來自甲班的人數(shù)為,求的分布列與數(shù)學期望.
附:(其中)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com