【題目】哈三中團委組織了“古典詩詞”的知識競賽,從參加考試的學生中抽出60名學生(男女各30名),將其成績分成六組,,…,,其部分頻率分布直方圖如圖所示.
(Ⅰ)求成績在的頻率,補全這個頻率分布直方圖,并估計這次考試的眾數(shù)和中位數(shù);
(Ⅱ)從成績在和的學生中選兩人,求他們在同一分數(shù)段的概率;
(Ⅲ)我們規(guī)定學生成績大于等于80分時為優(yōu)秀,經(jīng)統(tǒng)計男生優(yōu)秀人數(shù)為4人,補全下面表格,并判斷是否有99%的把握認為成績是否優(yōu)秀與性別有關?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男 | 4 | 30 | |
女 | 30 | ||
合計 | 60 |
0.025 | 0.010 | 0.005 | 0.001 | |
5.024 | 6.635 | 7.879 | 10.828 |
【答案】(Ⅰ)直方圖高度0.03,眾數(shù)75,中位數(shù);(Ⅱ);(Ⅲ)表格見解析,有99%的把握認為成績是否優(yōu)秀與性別有關.
【解析】
(Ⅰ)根據(jù)頻率和為1計算即可.
(Ⅱ)利用組合數(shù)的方法分別求解總的情況數(shù)與滿足條件的情況數(shù)即可.
(Ⅲ)根據(jù)頻率直方圖補全表格,再計算對照表格分析即可.
(Ⅰ)根據(jù)頻率和為1,計算的頻率為:
,
所以對應的頻率直方圖高度,如圖所示;
由頻率分布直方圖知眾數(shù)為75;
由,可知
中位數(shù)在內(nèi),計算中位數(shù)為;
(Ⅱ)成績在內(nèi)有人,在內(nèi)有人;
從這9人中選2人,基本事件為(種),
其中在同一分數(shù)段的基本事件為 (種),
故所求的概率為;
(Ⅲ)由題意填寫列聯(lián)表如下;
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男 | 4 | 26 | 30 |
女 | 14 | 16 | 30 |
合計 | 18 | 42 | 60 |
計算,
所以有99%的把握認為成績是否優(yōu)秀與性別有關。
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)當時,求函數(shù)的單調(diào)區(qū)間及極值;
(2)討論函數(shù)的零點個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,幾何體中,,均為邊長為2的正三角形,且平面平面,四邊形為正方形.
(1)若平面平面,求證:平面平面;
(2)若二面角為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知三棱柱中,底面,,,,.,分別為棱,的中點.
(1)求異面直線與所成角的大;
(2)若為線段的中點,試在圖中作出過、、三點的平面截該棱柱所得的多邊形,并求出以該多邊形為底,為頂點的棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,的離心率為,且點在此橢圓上.
(1)求橢圓的標準方程;
(2)設直線與圓相切于第一象限內(nèi)的點,且與橢圓交于.兩點.若的面積為,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)當時,判斷在定義域上的單調(diào)性;
(2)若對定義域上的任意的,有恒成立,求實數(shù)a的取值范圍;
(3)證明:,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,,,,四邊形ABEF是正方形.將正方形ABEF沿AB折起到四邊形的位置,使平面平面ABCD,M為的中點,如圖2.
圖1圖2
(1)求證:;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,是過點P(1,1),傾斜角為的直線,以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線C的極坐標方程為.
(1)寫出直線的參數(shù)方程及曲線C的直角坐標方程;
(2)直線L與曲線C交于AB兩點,若弦AB被點P平分時,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com