精英家教網 > 高中數學 > 題目詳情

已知函數f(x)=|x+1|,g(x)=2|x|+a.
(1)當a=0時,解不等式f(x)≥g(x);
(2)若任意x∈R,f(x)g(x)恒成立,求實數a的取值范圍.

(1)         (2) [1,+∞)

解析試題分析:(1)∵|x+1|≥2|x|⇒x2+2x+1≥4x2⇒-≤x≤1,
∴不等式f(x)≥g(x)的解集為.
(2)若任意x∈R, |x+1|2|x|+a恒成立,即任意x∈R, |x+1|-2|x|a恒成立,
令φ(x)=|x+1|-2|x|,則a φ(x)max
又φ(x)=
當x≥0時,φ(x)≤1;當-1≤x<0時,-2 ≤φ(x)<1;當x<-1時,φ(x)<-2.
綜上可得:φ(x)≤1,
∴a1,即實數a的取值范圍為[1,+∞).
考點:帶絕對值的函數;函數的最值及其幾何意義;函數恒成立問題.
點評:本題主要考查絕對值不等式的解法,求函數的最小值,函數的恒成立問題,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知是定義在上的偶函數,且時,
(Ⅰ)求,;
(Ⅱ)求函數的表達式;
(Ⅲ)若,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知某公司生產某品牌服裝的年固定成本為10萬元,每生產千件需另投入2.7萬元,設該公司年內共生產該品牌服裝千件并全部銷售完,每千件的銷售收入為萬元,且
(1)寫出年利潤(萬元)關于年產品(千件)的函數解析式;
(2)年產量為多少千件時,該公司在這一品牌服裝的生產中所獲年利潤最大?
(注:年利潤=年銷售收入-年總成本)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,曲線在點處的切線為,若時,有極值.
(1)求的值;
(2)求上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某村計劃建造一個室內面積為800的矩形蔬菜溫室。在溫室內,沿左.右兩側與后側內墻各保留1寬的通道,沿前側內墻保留3 寬的空地。當矩形溫室的邊長各為多少時?蔬菜的種植面積最大。最大種植面積是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

如圖,某動物園要建造兩間完全相同的矩形熊貓居室,其總面積為24平方米,設熊貓居室的一面墻AD的長為x米 .

(1)用x表示墻AB的長;
(2)假設所建熊貓居室的墻壁造價(在墻壁高度一定的前提下)為每米1000元,請將墻壁的總造價y(元)表示為x(米)的函數;
(3)當x為何值時,墻壁的總造價最低?

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某紡紗廠生產甲、乙兩種棉紗,已知生產甲種棉紗1噸需耗一級籽棉2噸、二級籽棉1噸;生產乙種棉紗1噸需耗一級籽棉1噸,二級籽棉2噸.每1噸甲種棉紗的利潤為900元,每1噸乙種棉紗的利潤為600元.工廠在生產這兩種棉紗的計劃中,要求消耗一級籽棉不超過250噸,二級籽棉不超過300噸.問甲、乙兩種棉紗應各生產多少噸,能使利潤總額最大?并求出利潤總額的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
⑴解不等式
⑵若不等式的解集為空集,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

某水晶制品廠去年的年產量為10萬件,每件水晶產品的銷售價格為100元,固定成本為80元.從今年起,工廠投入100萬元科技成本,并計劃以后每年比上一年多投入100萬元科技成本,預計產量每年遞增1萬件,每件水晶產品的固定成本與科技成本的投入次數的關系是.若水晶產品的銷售價格不變,第次投入后的年利潤為萬元.
( 1 )求的表達式;
( 2 )問從今年算起第幾年利潤最高?最高利潤為多少萬元?

查看答案和解析>>

同步練習冊答案